Сцепленное наследование егэ 2020 год

Сцепленное наследование егэ 2020 год

Задачи на сцепленное наследование неаллельных генов по Т.Моргану, при сдаче ЕГЭ по биологии оказываются сложными еще для бОльшего количества учащихся, чем задания по дигибридному скрещиванию неаллельных генов по Г.Менделю.

Снова подчеркну, что задачи на сцепленное наследование неаллельных генов ни в коем случае нельзя путать с задачами на анализирование закономерностей наследования признака, сцепленного с полом, то есть признака организма, аллельные гены которого находятся только в половых хромосомах XХ или ХY.

Хорошо бы уяснить и то, в чем закон сцепленного наследования Т.Моргана является противоположностью третьему закону независимого наследования признаков Г.Менделя:

а) по третьему закону Менделя во втором поколении от скрещивания дигетерозигот (AaBb x AaBb) образуется каждым из родителей с равной вероятностью (по 25%) по четыре сорта гамет AB, Ab, aB, ab .

б) по закону сцепленного наследования Моргана от скрещивания дигетерозигот (без кроссинговера) будет образовываться с равной вероятностью (по 50%) всего по два сорта гамет. Только AB и ab или Ab и aB (в зависимости от того какие аллели генов с какими являются сцепленными).

Итак, в задачах на сцепленное наследование надо определить какое потомство получится, если изучаемые признаки, находятся не в разных (как по Менделю), а в одной и той же паре гомологичных родительских хромосом, то есть относятся к одной группе сцепления.

А в чем проблема то

Поскольку анализируемые признаки в этом типе заданий относятся к одной группе сцепления, они и должны наследоваться по закону Моргана сцеплено или совместно. Да, действительно, чаще всего так и происходит, но как вы помните, при образовании половых клеток в профазе I мейоза может происходить кроссинговер (обмен равноценными участками гомологичных хромосом).

Да, интересен русский язык : пишу “может происходить “, подразумевая, что может и не происходить !

Так вот, с какой вероятностью возможен кроссинговер между данными в задаче парами анализируемых признаков, то есть с какой вероятностью произойдет нарушение закона их сцепленного наследования, что приведет к образованию у дигетерозигот не только двух пар основных гамет (как должно быть без кроссинговера), а дополнительно еще двух пар кроссоверных гамет (всего образуется четыре сорта гамет как-будто по Менделю, но не в равном соотношении) – это и предстоит определить.

Для того, чтобы лучше разобраться в теме сцепленного наследования, разберем подробно решения нескольких задач.

Очень важно помнить всего лишь следующее правило Т.Моргана:

вероятность нарушения сцепленного наследования или возникновения кроссинговера между неаллельными генами одной группы сцепления при мейозе прямо пропорциональна расстоянию между ними в хромосоме.

Я бы, как репетитор ЕГЭ по биологии, настоятельно рекомендовал это правило воспринимать в ранге закона , так как именно оно настолько универсально, что позволяет устанавливать генетические карты организмов и на нем построено решение почти всех задач по сцепленному наследованию. В последних учебниках биологии это правило даже не выделено курсивом ?!

Таким образом, что получается? Чем дальше изучаемые гены находятся друг от друга в данной паре гомологичных хромосом, тем с большей вероятностью при образовании половых клеток они будут наследоваться порознь, не совместно .

И последнее, самое главное определение. Поскольку о расстоянии между неаллельными генами в хромосоме можно судить по частоте перекреста между ними, была введена единица измерениярасстояния между генами : 1 сантиморган – сМ (более старый термин морганида). 1 сМ равен 1% перекрес та .

Задача 1. На сцепленное наследование с кроссинговером

У человека гены А и В локализованы в аутосоме и растояние между ними 8 морганид. Какая вероятность рождения ребенка с генотипом и фенотипом матери, если ее генотип Аb//аВ, а генотип супруга аb//аb.

Без кроссинговера генотип матери способен образовать только такие гаметы как : Аb и аВ.

Поскольку указано расстояние между ними равное 8 морганидам, то это значит, что мы должны решать эту задачу с возможным протеканием кроссинговера. Кроссинговер обеспечит с вероятность 8% появление кроме основных гамет еще и рекомбинантных (кроссоверных) таких как АВ и аb .

Поскольку генотип отца гомозиготен по обоим признакам, то он образует хоть без кроссинговера, хоть с кроссинговером всего один «сорт» гамет аb.

Таким образом, мы получим потомков : Аb//аb, аВ//аb по 46%, и АВ//аb , аb//аb по 4%, то есть вероятность рождения ребенка гетерозиготного по обоим признакам как мать АаВb равна 4%.

Задача 2. Про бабочек с кроссинговером

У бабочки-парусника ген, обуславливающий окраску тела, и ген, контролирующий наличие выступа на крыле, являются доминантными и расположены на расстоянии 6 морганид. Какое потомство можно ожидать от скрещивания гетерозиготной по обоим признакам самки и неокрашенного самца без выступа на крыле?

Сказано, что доминантные аллели разных генов окраски тела самки бабочки (обозначим А) и формы края крыла (обозначим В) находятся в одной хромосоме. Так как ещё известно, что она гетерозиготна по обоим признакам, значит в другой, гомологичной этой хромосоме, у неё „сидят“ рецессивные аллели этих двух признаков ав. Про самца сказано, что он был с фенотипически рецессивным по обоими изучаемым признакам.

Читать еще:  Порядок наследования иис 2020 год

Итак, нам известны генотипы самки и самца бабочки парусника : АВ//ав и ав//ав. Самка без кроссинговера производит такие гаметы: АВ и ав (их будет образовываться при мейозе 94% ). Самец — только ав (хоть с кроссинговером, хоть без кроссинговера — он ведь гомозиготный).

Кроссинговер обеспечит образование самкой при мейозе еще 6% вот таких рекомбинантных гамет: Ав и аВ.

Потомство: АВ// ав и ав// ав ( 47% цветных с выступом на крыле — как исходная самка и 47% неокрашенных без выступа — как исходный самец).

Ав// aв и аВ// ав ( 3% цветных без выступа и 3% неокрашенных с выступом на крыле).

Задача 3. Разводим кроликов (с кроссинговером)

У кроликов рецессивный ген белой пятнистости (голландские кролики) сцеплен с рецессивным геном, обуславливающим длинный волосяной покров ангорского типа. Кроссинговер на этом участке составляет 14 %. Гомозиготного длинношерстного пятнистого кролика скрестили с особью дикого типа. Какие фенотипы, и в каком соотношении должны иметь место в случае возвратного скрещивания гибридов первого поколения с голландским длинношерстным кроликом?

А — однотонный окрас шерсти (дикий тип), В — нормальная (короткая) длина шерсти (дикий тип);

а — пятнистый окрас (голландский кролик), b — длинная шерсть (ангора).

В этом первом скрещивании мы видим, что возможный кроссинговер при мейозе (образовании гамет) ни у одной из родительских форм (они обе дигомозиготы) не вызовет образования каких-либо новых рекомбинантных гамет : будут гаметы только ab и AB.

F1: .. AB//ab (все потомки в F1 получились дикого типа с однотонным окрасом и короткой шерстью, но уже дигетерозиготные).

Возвратное (обратное скрещивание с одним из родителей) скрещивание полученного гибрида с пятнистым длинношерстным даст:

G: AB, ab …………. ab (такие гаметы образуются без кроссинговера их 86%)

F2: AB//ab, ab//ab, соответственно, таких однотонных короткошерстных и пятнистых длинношерстных потомков будет рождаться по 43% .

В результате кроссинговера первый организм образует еще и такие рекомбинантные гаметы как : Ab и aB , поэтому появятся еще с вероятностью 14 % кролики вот с такими генотипами : Ab//ab и aB//ab , то есть однотонные с длинной шерстью и пятнистые с короткой шерстью по 7% .

Лекция № 18. Сцепленное наследование

В 1906 году У. Бэтсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве, гибриды всегда повторяли признаки родительских форм. Стало ясно, что не для всех признаков характерно независимое распределение в потомстве и свободное комбинирование.

Каждый организм имеет огромное количество признаков, а число хромосом невелико. Следовательно, каждая хромосома несет не один ген, а целую группу генов, отвечающих за развитие разных признаков. Изучением наследования признаков, гены которых локализованы в одной хромосоме, занимался Т. Морган. Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила.

Дрозофила каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка внешне хорошо различимы — у самца брюшко меньше и темнее. Они имеют всего 8 хромосом в диплоидном наборе, достаточно легко размножаются в пробирках на недорогой питательной среде.

Скрещивая мушку дрозофилу с серым телом и нормальными крыльями с мушкой, имеющей темную окраску тела и зачаточные крылья, в первом поколении Морган получал гибриды, имеющие серое тело и нормальные крылья (ген, определяющий серую окраску брюшка, доминирует над темной окраской, а ген, обусловливающий развитие нормальных крыльев, — над геном недоразвитых). При проведении анализирующего скрещивания самки F1 с самцом, имевшим рецессивные признаки, теоретически ожидалось получить потомство с комбинациями этих признаков в соотношении 1:1:1:1. Однако в потомстве явно преобладали особи с признаками родительских форм (41,5% — серые длиннокрылые и 41,5% — черные с зачаточными крыльями), и лишь незначительная часть мушек имела иное, чем у родителей, сочетание признаков (8,5% — черные длиннокрылые и 8,5% — серые с зачаточными крыльями). Такие результаты могли быть получены только в том случае, если гены, отвечающие за окраску тела и форму крыльев, находятся в одной хромосоме.

1 — некроссоверные гаметы; 2 — кроссоверные гаметы.

Если гены окраски тела и формы крыльев локализованы в одной хромосоме, то при данном скрещивании должны были получиться две группы особей, повторяющие признаки родительских форм, так как материнский организм должен образовывать гаметы только двух типов — АВ и аb , а отцовский — один тип — аb . Следовательно, в потомстве должны образовываться две группы особей, имеющих генотип ААВВ и ааbb . Однако в потомстве появляются особи (пусть и в незначительном количестве) с перекомбинированными признаками, то есть имеющие генотип Ааbb и ааВb . Для того, чтобы объяснить это, необходимо вспомнить механизм образования половых клеток — мейоз. В профазе первого мейотического деления гомологичные хромосомы конъюгируют, и в этот момент между ними может произойти обмен участками. В результате кроссинговера в некоторых клетках происходит обмен участками хромосом между генами А и В , появляются гаметы Аb и аВ , и, как следствие, в потомстве образуются четыре группы фенотипов, как при свободном комбинировании генов. Но, поскольку кроссинговер происходит при образовании небольшой части гамет, числовое соотношение фенотипов не соответствует соотношению 1:1:1:1.

Читать еще:  Договор наследования по завещанию 2020 год

Группа сцепления — гены, локализованные в одной хромосоме и наследующиеся совместно. Количество групп сцепления соответствует гаплоидному набору хромосом.

Сцепленное наследование — наследование признаков, гены которых локализованы в одной хромосоме. Сила сцепления между генами зависит от расстояния между ними: чем дальше гены располагаются друг от друга, тем выше частота кроссинговера и наоборот. Полное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются так близко друг к другу, что кроссинговер между ними становится невозможным. Неполное сцепление — разновидность сцепленного наследования, при которой гены анализируемых признаков располагаются на некотором расстоянии друг от друга, что делает возможным кроссинговер между ними.

Независимое наследование — наследование признаков, гены которых локализованы в разных парах гомологичных хромосом.

Некроссоверные гаметы — гаметы, в процессе образования которых кроссинговер не произошел.

Образуются гаметы:

Кроссоверные гаметы — гаметы, в процессе образования которых произошел кроссинговер. Как правило кроссоверные гаметы составляют небольшую часть от всего количества гамет.

Образуются гаметы:

Нерекомбинанты — гибридные особи, у которых такое же сочетание признаков, как и у родителей.

Рекомбинанты — гибридные особи, имеющие иное сочетание признаков, чем у родителей.

Расстояние между генами измеряется в морганидах — условных единицах, соответствующих проценту кроссоверных гамет или проценту рекомбинантов. Например, расстояние между генами серой окраски тела и длинных крыльев (также черной окраски тела и зачаточных крыльев) у дрозофилы равно 17%, или 17 морганидам.

У дигетерозигот доминантные гены могут располагаться или в одной хромосоме (цис-фаза), или в разных (транс-фаза).

1 — Механизм цис-фазы (некроссоверные гаметы); 2 — механизм транс-фазы (некроссоверные гаметы).

Результатом исследований Т. Моргана стало создание им хромосомной теории наследственности:

  1. гены располагаются в хромосомах; различные хромосомы содержат неодинаковое число генов; набор генов каждой из негомологичных хромосом уникален;
  2. каждый ген имеет определенное место (локус) в хромосоме; в идентичных локусах гомологичных хромосом находятся аллельные гены;
  3. гены расположены в хромосомах в определенной линейной последовательности;
  4. гены, локализованные в одной хромосоме, наследуются совместно, образуя группу сцепления; число групп сцепления равно гаплоидному набору хромосом и постоянно для каждого вида организмов;
  5. сцепление генов может нарушаться в процессе кроссинговера, что приводит к образованию рекомбинантных хромосом; частота кроссинговера зависит от расстояния между генами: чем больше расстояние, тем больше величина кроссинговера;
  6. каждый вид имеет характерный только для него набор хромосом — кариотип.

Перейти к лекции №17 «Основные понятия генетики. Законы Менделя»

Перейти к лекции №19 «Генетика пола»

Смотреть оглавление (лекции №1-25)

Сцепленное наследование егэ 2020 год

В каждой хромосоме находится несколько тысяч генов. В связи с этим возникает вопрос о том, как будут наследоваться признаки, гены которых находятся в одной хромосоме. В 1906 г. В. Бэтсон и Р. Пен- нет проводили опыты по скрещиванию двух различных рас душистого горошка, которые различались по двум парам признаков (по форме пыльцы и по окраске цветка). Ученые ожидали получить в F 2 расщепление признаков в отношении 9:3:3:1, однако этого не случилось: признаки не дали независимого наследования, они оставались в исходной комбинации, которая была у родительских форм. Это явление сначала было названо «притяжением», а позднее в работах американского генетика Томаса Гента Моргана и его сотрудников получило название «сцепления генов». Благодаря работам Т. Моргана и было достигнуто понимание этого явления. Морган установил, что материальной основой сцепления является хромосома. Все гены, находящиеся в одной хромосоме, связаны между собой («сцеплены») и образуют «группы сцепления». Сцепленные гены располагаются в линейном порядке и наследуются вместе. Число групп сцепления равно числу пар хромосом, то есть гаплоидному набору хромосом (у гомогаметных особей).

Закон сцепления (закон Моргана) может быть сформулирован так: гены, находящиеся в одной хромосоме, образуют группу сцепления и наследуются вместе по схеме моногибридного скрещивания. Число групп сцепления равно гаплоидному набору хромосом.

Разобрать это явление можно на следующем примере: если два гена полностью сцеплены, то дигибрид будет давать только два сорта гамет — АВ и а b в отношении 1:1. Если же гены наследуются независимо (не сцепленно), то дигетерозигота дает 4 сорта гамет: АВ, АЪ, аВ, аЪ в равном соотношении. Проверить этот факт можно путем анализирующего скрещивания (то есть скрещивания с гомозиготной рецессивной формой): расщепление в анализирующем скрещивании покажет исследователю, сцеплены гены или же наследуются независимо. В случае если дигибрид образует только два сорта гамет (то есть гены сцеплены), в результате анализирующего скрещивания будет получено лишь две группы особей в отношении 1:1. Половина потомства будет иметь доминантные признаки, а вторая половина — рецессивные, то есть перекомбинации признаков наблюдаться не будет. При независимом наследовании анализирующее скрещивание даст 4 группы особей в равном соотношении с перекомбинацией исходных признаков.

Читать еще:  Цитоплазматическое наследование 2020 год

Дальнейшие опыты Т. Моргана выявили, что сцепление не всегда бывает абсолютным. В экспериментах с плодовой мушкой дрозофилой Морган показал, что полное сцепление наблюдается только в 83% случаев (41,5% потомства имели серое тело и длинные крылья и 41,5% — черное тело и короткие крылья, то есть признаки родительских форм). В 17% случаев наблюдалась перекомбинация признаков: 8,5% потомства имело серое тело и короткие крылья и 8,5% — черное тело и длинные крылья. Причиной нарушения сцепления генов стал кроссинговер — перекрест хромосом, который происходит в профазе I мейоза. Было доказано, что чем дальше друг от друга расположены гены в хромосоме, тем выше вероятность перекреста и тем больше образуется гамет с перекомбинацией генов. Таким образом, частота кроссинговера между генами пропорциональна расстоянию между ними. В результате кроссинговера увеличивается комбинативная изменчивость, которая дает материал для естественного отбора. В этом и состоит биологическое значение кроссинговера.

С учетом процента кроссинговера составляются генетические карты хромосом. На таких картах нанесено относительное расстояние между генами, которое измеряется в морганидах. Одна морганида равна 1% кроссинговера.

Рекомендации по подготовке к ЕГЭ части С5 и С6. Решение задач по молекулярной генетике. Определение типа наследования, решение задач на независимое и сцепленное наследование

ГКООУ «Санаторная школа – интернат» г. Петровск Саратовская область.

учитель высшей квалификационной категории.

Рекомендации по подготовке к ЕГЭ части С5 и С6. Решение задач по молекулярной генетике. Определение типа наследования, решение задач на независимое и сцепленное наследование.

С каждым годом материалы ЕГЭ усложняются, особенно задания части «С». Предлагаю некоторые рекомендации по выполнению части С5,С6 .Часть С5 включает разные задания, например:

1.Известно, что аппарат Гольджи особенно хорошо развит в железистых клеток поджелудочной железы. Объясните почему?:

а) в клетках поджелудочной железы синтезируются ферменты, которые накапливаются в полостях аппарата Гольджи;

б )в аппарате Гольджи ферменты упаковываются в виде пузырьков;

Общая масса митохондрий по отношению к массе клеток различных органов крысы составляет: в поджелудочной железе -7,9% ,в печени-18,4%,в сердце 35,8% . Почему в клетках этих органов различное содержание митохондрий?

а) т. к. митохондрии являются энергетическими станциями клетки, в них синтезируются и накапливаются молекулы АТФ;

б) для интенсивной работы сердечной мышцы необходимо много энергии и поэтому содержание митохондрий в ее клетках наиболее высокое;

В) в печени количество митохондрий по сравнению с поджелудочной железой выше, т.к. в ней идет более интенсивный обмен веществ.

Задачи по молекулярной генетике.

В молекуле ДНК одной из водорослей содержание тимина составляет 20% от общего числа азотистых оснований. Сколько (в%)в этой молекуле ДНК содержится аденина, цитозина и гуанина? Напишите полные названия нуклеотидов ДНК и РНК, содержащих одинаковые азотистые основания –аденин и цитозин. Где в пространственной структуре ДНК располагаются азотистые основания?

Решение. В молекуле ДНК комплементарные пары состоят из пуринового и пиримидинового оснований: А – Т, Ц – Г. Следовательно, количество пуриновых оснований равно количеству пиримидиновых. По условию задачи, тимина (пиримидиновое основание) – тоже 20%. Гуанина — пуриновое основание и цитозина — пиримидиновое основание – по 30%. Нуклеотиды ДНК :адениловый и цитидиловый дезоксирибонуклеотиды ; нуклеотиды РНК : адениловый и цитидиловый рибонуклеотиды. Азотистые основания обоих цепей ДНК ориентированы к середине спирали.

Фрагмент ДНК состоит из 60 пар нуклеотидов. Сколько полных витков спирали в этом фрагменте ДНК? Какова длина (в нм) этого фрагмента ДНК? Какие функции выполняет ДНК?

Решение. В каждом полном витке (шаге) спирали ДНК – 10 пар нуклеотидов. Следовательно, в этом фрагменте ДНК 6 витков. Длина одного витка ДНК – 3,4 нм. Длина этого фрагмента ДНК: 3,4х 6 = 20 нм.

ДНК выполняет функции: сохранения и передачи наследственной информации от клетки к клетке, от организма к организму; реализации наследственной информации через транскрипцию; регуляции всех процессов в клетке (организме).

Ген эукариот, кодирующий белок М, состоит из трех экзонов ( по 120 пар нуклеотидов) и двух интронов (по 600 пар нуклеотидов). Сколько всего нуклеотидов содержится в незрелой про – и РНК и зрелой и РНК? Объясните.

Решение. У эукариот транскрибируются все нуклеотиды гена (кодирующие – экзоны и некодирующие – интроны). Для определения количества нуклеотидов в незрелой про – и РНК надо суммировать количество нуклеотидов в 3-х экзонах и в двух интронах: (120 х 3) + (600 х2)= 1560 нуклеотидов. Во время созревания про – и РНК интроны из нее « вырезаются», в зрелой и РНК остаются нуклеотиды 3-х экзонов: 120 х 3=360 нуклеотидов. Таким образом, в про — и РНК содержится 1560 нуклеотидов, в и РНК — 360 нуклеотидов.

Определение типа наследования признаков.

Определить, как наследуются признаки – сцеплено или независимо, можно по результатам анализирующего скрещивания.

1.При независимом наследовании:

F1 АаВв, аавв, Аавв, ааВв – 4 фенотипических класса потомков по 25%.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector