Правило независимого наследования признаков 2020 год

Законы независимого наследования признаков. Законы Менделя. Генетика

В результате исследований ученых К. Корренса, Г. де Фриза, Э. Чермака в 1900 году были «переоткрыты» законы генетики, сформулированные еще в 1865 году родоначальником науки наследственности – Грегором Менделем. В своих опытах естествоиспытатель применил гибридологический метод, благодаря которому были сформулированы принципы наследования признаков и некоторых свойств организмов. В данной статье мы рассмотрим основные закономерности передачи наследственности, изучаемые генетиком.

Г. Мендель и его исследования

Применение гибридологического метода позволило ученому установить ряд закономерностей, впоследствии названных законами Менделя. Например, им было сформулировано правило единообразия гибридов первого поколения (первый закон Менделя). Он указывал на факт проявления у гибридов F1 только одного признака, контролируемого доминантным геном. Так, при скрещивании растений посевного гороха, сорта которого различались цветом семян (желтые и зеленые), все гибриды первого поколения имели только желтое окрашивание семян. Более того, все эти особи имели также и одинаковый генотип (являлись гетерозиготами).

Закон расщепления

Продолжая скрещивать между собой особи, взятые из гибридов первого поколения, Мендель получил в F2 расщепление признаков. Другими словами, фенотипически были выявлены растения с рецессивным алеллем исследуемого признака (зеленой окраской семян) в количестве одной трети от всех гибридов. Таким образом, установленные законы независимого наследования признаков позволили Менделю проследить механизм передачи как доминантных, так и рецессивных генов в нескольких поколениях гибридов.

Ди- и полигибридное скрещивание

В последующих экспериментах Мендель усложнил условия их проведения. Теперь, для скрещивания брались растения, отличающиеся как двумя, так и большим количеством пар альтернативных признаков. Ученый проследил принципы наследования доминантных и рецессивных генов и получил результаты расщепления, которые можно представить общей формулой (3:1) n , где n – количеств пар альтернативных признаков, которыми отличаются родительские особи. Так, для дигибридного скрещивания расщепление по фенотипу у гибридов второго поколения будет иметь вид: (3:1) 2 =9:6:1 или 9:3:3:1. То есть у гибридов второго поколения можно наблюдать четыре вида фенотипов: растения с желтыми гладкими (9/16 частей), с желтыми морщинистыми (3/16), с зелеными гладкими (3/16) и с зелеными морщинистыми семенами (1/16 часть). Таким образом, законы независимого наследования признаков получили свое математическое подтверждение, и полигибридное скрещивание стали рассматривать как несколько моногибридных – «накладывающихся» друг на друга.

Виды наследования

В этих случаях несколько признаков у одной особи наследуются вместе, так как контролируются генами, локализованными в одной хромосоме и расположенными в ней рядом – друг за другом. Они образуют группы сцепления, количество которых равно гаплоидному набору хромосом. К примеру, у человека кариотип составляет 46 хромосом, что соответствует 23 группам сцепления. Было установлено, что чем меньше расстояние между генами в хромосоме, тем реже между ними возникает процесс кроссинговера, который приводит к явлению наследственной изменчивости.

Как наследуются гены, локализованные в Х-хромосоме

Продолжим изучать закономерности наследования, подчиняющиеся хромосомной теории Моргана. Генетическими исследованиями было установлено, что как у человека, так и у животных (рыб, птиц, млекопитающих) присутствует группа признаков, на механизм наследования которых влияет пол особи. Например, окраска шерсти у кошек, цветное зрение и свертываемость крови у человека контролируются генами, расположенными в половой Х-хромосоме. Так дефекты соответствующих генов у человека фенотипически проявляются в форме наследственных заболеваний, называемых генными. К ним относятся гемофилия и дальтонизм. Открытия Г. Менделя и Т. Моргана позволили применять законы генетики в таких важнейших областях человеческого общества, как медицина, сельское хозяйство, селекция животных, растений и микроорганизмов.

Взаимосвязь между генами и определяемыми ими свойствами

Благодаря современным генетическим исследованиям, было установлено, что законы независимого наследования признаков подлежат дальнейшему расширению, так как отношение «1 ген – 1 признак», лежащее в их основе, не является универсальным. В науке стали известны случаи множественного действия генов, а также взаимодействия неалелльных их форм. К таким видам относится эпистаз, комплиментарность, полимерия. Так было установлено, что количество пигмента кожи мелатонина, отвечающее за её цвет, контролируется целой группой наследственных задатков. Чем больше в генотипе человека доминантных генов, отвечающих за синтез пигмента, тем темнее кожа. Этот пример иллюстрирует такое взаимодействие, как полимерия. У растений данная форма наследования присуща видам семейства злаковых, у которых окраска зерновки контролируется группой полимерных генов.

Таким образом, у каждого организма генотип представлен целостной системой. Она сформировалась в результате исторического развития биологического вида – филогенеза. Состояние большинства признаков и свойств особи — это результат взаимодействия генов, как аллельных, так и неаллельных, а сами они могут влиять на развитие сразу нескольких признаков организма.

ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ

Лекция-6

План:ПОЛИГИБРИДНОЕ СКРЕЩИВАНИЕ

ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ

Установив закономерности наследования признаков при моно­гибридном скрещивании, Мендель приступил к проведению ди-гибридного скрещивания. Он отобрал два сорта гороха, которые отличались по двум парам альтернативных признаков. Одна из них определяла форму семян: круглая (АА) или морщинистая (аа), другая — окраску: желтая (ВВ) или зеленая (bb). При опылении растений с круглыми желтыми семенами (ААВВ) пыльцой сорта с морщинистыми зелеными семенами (aabb) все семена гибридов первого поколения оказались круглыми и желтыми (АаВЬ):

р О ААВВ круглые желтые х О aabb морщинистые зеленые

Доминировали та же форма и тот же цвет семян, что и при моногибридном скрещивании. При самоопылении 15 гибридных растений из Fi с круглыми желтыми семенами (АаВЬ х АаВЬ) во втором поколении было получено 556 семян, которые по парам признаков распределились в следующем количественном соотно­шении: круглых желтых —315, круглых зеленых— 108, морщи­нистых желтых — 101, морщинистых зелены*—32. Мендель Принял число 32 за единицу и получил формулу расщепления по фенотипу в F2 при дигибридном скрещивании — 9 круглых жел­тых : 3 круглых зеленых : 3 морщинистых желтых : 1 морщинис­тую зеленую. Подсчет отдельно по каждой паре признаков пока­зал, что по форме 423 растения были с круглыми, 133 с морщи­нистыми семенами, отношение, близкое 3:1; по окраске 416 растений было с желтыми и 140 с зелеными семенами, отноше­ние также 3:1.

Расщепление по каждой паре признаков шло так же, как и при моногибридном скрещивании. Мендель делает вывод о том, что при дигибридном скрещивании в F2 наблюдается сочетание двух моногибридных расщеплений. При сочетании двух моно­гибридных расщеплений у Fi (AaBb) должно происходить неза­висимое^, распределение в половые клетки аллельных генов по одному из каждой пары. Это приведет к образованию четырех типов гамет (ЛВ, Ab, аВ, ab) в равном числе.

Читать еще:  Х сцепленный тип наследования 2020 год

Ниже приводится решетка, предложенная Р. Пеннетом, где вверху по горизонтали и слева по вертикали помещены гаметы родителей, а в центральной части — генотипы потомков F2-

Расщепление гибридов F2 по генотипу дает 9 классов: IAABR2 AaBB-.2AABk4AaBb:lAAbb:2Aabb:laaBB:2aaBb:laabb. По фенотипу образуется четыре класса в отношении: 9 частей круглых желтых (AABB, lAaBB, lAABb, ААаВЬ), три части круглых морщинистых (lAAbb, 2Aabb), три части морщинистых желтых (ХааВВ, 2ааВЬ), одна часть морщинистых зеленых (aabb).

Анализ по фенотипу показывает, что по форме семян на 12 частей круглых наблюдается 4 части морщинистых (3:1), по ок­раске на 12 частей желтых —4 зеленых (3:1). Следовательно, во втором поколении дигибридного скрещивания наследование по одной паре признаков (форме семян) идет независимо от насле­дования по другой паре (окраске семян).

У гибридов F2 наблюдается сочетание признаков во всех воз­можных комбинациях. Появляются потомки, имеющие признаки обеих родительских форм, например растения с желтыми мор­щинистыми и зелеными гладкими семенами.

Мендель проверил путем самоопыления генотип всех расте­ний F2 и подтвердил, что расщепление по генотипу при дигиб­ридном скрещивании является результатом независимого комби­нирования двух отдельных расщеплений по генотипу при моно­гибридном скрещивании. Получение формулы расщепления показано в таблице 2, где вверху по горизонтали дано расщепле­ние по генотипу, определяющее форму семян, а по вертикали — определяющее окраску семян.

2. Вывод формулы расщепления по генотипу при дигибридном

Расщепление По одной паре аллелей
по генотипу АА 2Аа аа
По другой паре
аллелей
ВВ 1ААВВ 14а В В laaBB
2ВЬ 2ЛЛВЬ 4АаВЬ 2ааВЪ
ЬЬ lAAbb 2Aabb laabb

Примечание. В центральной части таблицы показано расщепление по генотипу одновременно по двум парам признаков. Оно имеет такой вид: ХААВВ + + lAABb + lAAbb + lAaBB + AaBb + lAabb + laaBB + laaBb + laabb.

Мендель показал, что независимое наследование признаков обусловлено независимым наследованием разных пар аллелей. В основе независимого наследования разных пар аллелей (наслед­ственных задатков) лежит независимое комбинирование хромо­сом при образовании гамет.

Правильность своих выводов о независимом комбинировании генов и признаков Мендель подтвердил путем проведения анали­зирующего скрещивания. Он скрестил гибридные растения Fi с круглыми желтыми семенами (АаВЬ) с отцовским растением, гомозиготным по рецессивным признакам морщинистой формы семян и зеленой их окраски (aabb). У гибрида Fi при независи­мом комбинировании генов равновероятно образование четырех сортов гамет (АВ, Ab, aB, ab), у отцовского растения образуются гаметы только одного сорта (ab). Наследование идет по следую­щей схеме:

р О АаВЬ круглые желтые х О aabb морщинистые зеленые

Было получено потомство четырех фенотипов: круглые жел­тые (АаВЬ), круглые зеленые (Aabb), морщинистые желтые (ааВЬ), морщинистые зеленые (aabb). Потомков ‘каждого типа было получено одинаковое число — по 25 %. Так как у отцов­ского растения половые клетки были одинаковые — ab, то рав­ное число особей с каждым фенотипом является результатом того, что гибриды Fi (АаВЬ) образовали половые клетки каждого типа (AB, Ab, аВ, ab) в равном количестве. Это возможно только при независимом комбинировании генов.

На основании опытов по дигибридному скрещиванию был установлен закон независимого наследования признаков (назы­вают также — независимого наследования аллелей разных генов).

Закон независимого наследования признаков состоит в том, что во втором поколении каждая пара аллельных генов и признаков, определяемых ими, ведет себя независимо от других пар аллельных генов и признаков. При этом возникают всевозможные сочетания в определенных числовых соотношениях по фенотипу и геноти­пу. При дигибридном скрещивании, при полном доминирова­нии, соотношение по фенотипу будет 9:3:3:1, при тригибридном скрещивании будет свое определенное соотношение и т. д.

Разберем пример дигибридного скрещивания применительно к животным. Скрестим свиноматку породы ландрас белую с висячими ушами с хряком беркширской породы черным со сто­ячими ушами. Одна пара признаков характеризует масть (белая или черная), другая пара — форму ущей (висячие или стоячие). Ген доминантного признака белой масти обозначим прописной буквой А, а аллельный ген рецессивной черной масти — строч­ной буквой а. Ген доминирующих висячих ушей обозначим бук­вой Д ген стоячих ушей — Ь. Допустим, что аллельные гены по указанным парам признаков находятся в разных парах хромосом’ (рис. 10). Оба родителя гомозиготны: мать по доминантным при­знакам белой масти и висячих ушей (ААВВ), отец по рецессив­ным признакам черной масти и стоячих ушей (aabb). В период образования половых клеток при мейозе из каждой пары гомо­логичных хромосом в гамету придет только одна. Поскольку родители гомозиготны, то у каждого из них будут все гаметы одного типа: у свиноматки АВ, у хряка ab.

В первом поколении в соответствии с первым законом Мен­деля все свиньи по фенотипу будут одинаковыми: белыми, с висячими ушами, по генотипу дигетерозиготны, т. е. гетерози­готны по обеим парам признаков (АаВЬ).

В гибридах F2, которые получают путем спаривания животных Fi между собой, наблюдается расщепление. Предположим, что одна пара аллельных генов А и а находится в более длинных гомологичных хромосомах, другая пара В и Ъ — в более корот­ких. В результате мейоза из каждой пары гомологичных хромо­сом в каждую половую клетку пойдет только одна. Аллели Аи а

Рис. 10. Схема скрещивания белой с висячими ушами сяиноматки с черным

со стоячими ушами хряком

разойдутся, то же самое произойдет и с аллелями В и Ъ. Расхож­дение в гаметы хромосом из каждой пары происходит независи­мо, поэтому аллель А может уйти с равной вероятностью как в те гаметы, куда ушел аллель /?, так и в те, куда ушел аллель Ь. Аллель а также с равной вероятностью может попасть в гаметы как с аллелем В, так и с аллелем Ь. В результате как хряки, так и свиноматки из F[ образуют по четыре сорта гамет: АВ, АЪ, аВ, аЪ в равном количестве.

Читать еще:  Аутосомно рецессивный тип наследования родословная 2020 год

Каждый из спермиев может оплодотворить любую из яйце­клеток с одинаковой вероятностью. Получается 16 возможных сочетаний гамет отца и матери. Результаты этой случайной встречи гамет хорошо видны при использовании решетки Пен-нета. В верхней горизонтальной строке как заголовки записаны типы гамет одного родителя, а слева вертикально, как заголовки строчек, расположены типы гамет другого родителя. В каждый квадрат на пересечении столбца и строчки записаны генотип и фенотип потомка, определяемые исходя из сочетаний гамет, сто­ящих в заголовках. В заголовках располагают сначала гаметы с доминирующими генами, затем с доминирующим и рецессив­ным и в конце с рецессивными. При записи генотипа каждого потомка сначала располагают гены одной аллельной пары, затем другой, рядом указывают фенотип. Затем подсчитывают особей с разными фенотипами и генотипами.

Из данных решетки видно, что в F2 среди особей с разным фенотипом наблюдается следующее количественное соотноше­ние: 9 частей белых с висячими ушами; 3 части белых со стоячи­ми ушами; 3 части черных с висячими ушами; 1 часть черных со стоячими ушами. Рассматривая каждую пару признаков отдель­но, находим, что на 12 белых свиней приходится 4 черные (отношение 3:1) и, с другой стороны, на 12 свиней с висячими ушами — 4 со стоячими (отношение 3:1).

Таким образом, каждая пара признаков при наследовании ведет себя независимо от другой пары, и только в результате их свободного комбинирования наблюдается характерное для ди-гибридного расщепления соотношение фенотипов в F2 — 9:3:3:1, которое можно рассматривать как результат сочетания двух мо­ногибридных расщеплений (3:1 и 3:1).

Расщепление по генотипу во втором поколении точно такое же, как установил Мендель на растениях гороха.

Не нашли то, что искали? Воспользуйтесь поиском:

mozok.click

Законы Менделя. Независимое наследование признаков

Основные понятия и ключевые термины: Дигибридное скрещивание. ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ. Анализирующее скрещивание.

Вспомните! Как формулируются I и II законы Менделя?

Реджинальд Пеннет (1875-1967) — английский биолог, один из основателей генетики. Учёный стал автором «решётки Пеннета» — двухмерной таблицы, её используют для определения результатов скрещивания. Для построения решётки Пеннета в клетках по горизонтали откладывают все возможные типы гамет одного из родительских организмов, а по вертикали — другого.

Как происходит наследование двух признаков?

Дигибридное скрещивание — это скрещивание родительских особей, которые отличаются проявлениями двух признаков. Для изучения того, как наследуются два признака, Г. Мендель выбрал окраску семян гороха и форму горошин (ил. 90). Цвет семян гороха, как вы знаете, имеет два проявления — доминантное жёлтое и рецессивное зелёное. Форма семян бывает гладкой (доминантное проявление) и морщинистой (рецессивное проявление).

Далее Мендель скрестил между собой чистые линии, представители которых формировали жёлтые семена с гладкой поверхностью и зелёные с морщинистой. Гибриды первого поколения образовывали только семена жёлтого цвета с гладкой поверхностью.

А какими будут потомки гибридов второго поколения? После серии опытов оказалось, что среди них наблюдаются четыре группы в соотношении 9 : 3 : 3 : 1.

Девять частей семян были жёлтого цвета с гладкой поверхностью (315 семян), три части — жёлтого цвета с морщинистой поверхностью (101 семя), ещё три части зелёного цвета с гладкой поверхностью

(108 семян), а одна часть — зелёного цвета с морщинистой поверхностью (32 семени). Кроме семян, которые имели комбинации проявлений признаков, присущих родительским формам (жёлтый цвет — гладкая поверхность и зелёный цвет — морщинистая поверхность), появились ещё две группы с новыми комбинациями (жёлтый цвет — морщинистая поверхность и зелёный цвет — гладкая поверхность).

Чтобы объяснить эти результаты, Г. Мендель проследил наследование различных проявлений каждого признака отдельно. Соотношение семян разного цвета гибридов второго поколения было таким: 12 частей семян имели жёлтый цвет, а 4 — зелёный, то есть расщепление по признаку цвета, как и в случае моногибридного скрещивания, составляло 3 : 1 Подобное наблюдали и при расщеплении по признаку структуры поверхности семян: 12 частей семян имели гладкую поверхность, а 4 — морщинистую. То есть расщепление по признаку структуры поверхности семян также было 3 : 1.

Эта закономерность получила название третьего закона Менделя, или закона независимого наследования.

Итак, ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ

формулируется так: каждая пара признаков наследуется независимо

от других признаков.

Каковы цитогенетические основы закона независимого наследования признаков?

Цитогенетические основы III закона Менделя можно рассмотреть с помощью решётки Пеннета. Родительские формы (Р) из чистых линий имеют признаки: жёлтые гладкие (ААВВ) и зелёные морщинистые (ааЪЪ).

В цветках путём мейоза образуются гаметы (АВ) и (аЪ) с гаплоидным набором хромосом. При оплодотворении гаметы образуют диплоидные гетерозиготы (АаВЪ), из которых развиваются гибридные растения (F^ с жёлтыми и гладкими горошинами.

При скрещивании или самоопылении гибридов (F1) уже будут образовываться по четыре типа гамет (G) — АВ, АЪ, аВ и аЪ. Поэтому среди гибридов второго поколения (F2) возможны 16 комбинаций гамет, образующихся путём независимого расхождения гомологичных хромосом во время мейоза (ил. 91).

Очень важно понять, что хромосомы каждой пары осуществляют этот процесс независимо от других пар. В результате хромосомы, полученные от отца и матери, перераспределяются по гаметам случайно. При этом в гаметах образуются новые сочетания хромосом, отличные от тех, что существовали в родительских гаметах. Происходит рекомбинация признаков — процесс, приводящий к возникновению новых сочетаний проявлений признаков и увеличению генетического разнообразия.

Сочетание одинаковых генотипов даёт такое соотношение по генотипу: 1 : 1 : 2 : 2 : 4 : 2 : 2 : 1 : 1, а статистическая обработка результатов по внешним проявлениям признаков — соотношение по фенотипу -9 : 3 : 3 : 1. При условии полного доминирования доминантных аллелей над соответствующими рецессивными жёлтые семена с гладкой поверхностью будут определяться четырьмя вариантами генотипа (ААВВ, АаВЬ, аавв, АаВЬ), жёлтые с морщинистой — двумя (ааЪЪ, ааЪЪ), зелёные с гладкой — также двумя (ааВВ, АаВЬ), а зелёные с морщинистой — одним (ааЪЪ).

Генетическая схема дигибридного скрещивания

Итак, при дигибридном скрещивании разнообразие потомков достигается разнообразием гамет и комбинаций гамет, возникающих вследствие случайного и независимого расхождения гомологичных хромосом.

В чём суть анализирующего скрещивания?

Для определения и проверки генотипов гибридных особей особенно важны анализирующие скрещивания.

Анализирующее скрещивание — это скрещивание гибрида с неизвестным генотипом (или АА, или Аа) с рецессивной гомозиготой, генотип которой всегда (аа) (ил. 92).

Читать еще:  Первая линия наследования 2020 год

I вариант. Если при скрещивании особей с доминантным признаком (А — ) с рецессивной гомозиготной (аа) особью всё потомство окажется одинаковым, значит анализируемая особь с доминантным признаком гомозиготная (АА).

II вариант. Если при скрещивании особей с доминантным признаком (А — ) с рецессивной гомозиготой (аа) полученное потомство даёт расщепление 1 : 1, то исследуемая особь с доминантным признаком гетерозиготная (Аа).

Итак, анализирующее скрещивание позволяет определить генотип гибридов, типы гамет и их соотношение.

Практическая работа № 3(Б)

СОСТАВЛЕНИЕ СХЕМ ДИГИБРИДНОГО СКРЕЩИВАНИЯ

Цель: закрепляем знания III закона Менделя; формируем умение составлять схемы скрещивания особей.

Упражнение 1. Какие типы гамет образуют организмы с такими генотипами: а) ААВВ; б) аавв; в) ааВВ; г) АаВЬ; д) ааbb; е) АаВb?

Упражнение 2. У томатов нормальная высота (А) и красный цвет плодов (В) — доминантные признаки, а карликовость и желтоплод-ность — рецессивные. Какие плоды будут у растений, полученных в результате скрещивания: а) ааЬЬ х ааВВ; б) АаВЬ х ааЬЬ; в) АаВЬ х ааЬЬ?

Упражнение 3. У человека кареглазие и наличие веснушек — доминантные признаки. Кареглазый без веснушек мужчина женится на голубоглазой женщине с веснушками. Определите, какими у них будут дети, если человек гетерозиготный по признаку кареглазости, а женщина гетерозиготна по признаку веснушек.

Упражнение 4. У тыквы белая окраска плодов доминирует над жёлтой, а круглая форма — над удлинённой. Каким будет расщепление по фенотипу при дигибридном скрещивании родительских особей с генотипами аавв х АаВЬ?

Упражнение 5. Длинношерстного чёрного самца морской свинки скрестили с чёрной короткошерстной самкой. Получено 15 свинок с короткой чёрной шерстью, 13 — с длинной чёрной, 4 — с короткой белой, 5 — с длинной белой. Определите генотипы родителей, если черная и длинная шерсть являются доминирующими проявлениями признаков.

ОТНОШЕНИЕ Биология + Алгебра

Для решения упражнений в алгебре достаточно часто используют формулы сокращённого умножения. Многие из них являются частными случаями бинома Ньютона. Что такое бином Ньютона? Чему равен квадрат суммы двух выражений и как его применяют при наследовании признаков?

Задания для самоконтроля

1. Что такое дигибридное скрещивание? 2. Сформулируйте Ill закон Менделя. 3. Что такое рекомбинация признаков? 4. Сколько типов гамет образуют гибриды второго поколения являясь дигетерозиготами? 5. Что такое анализирующее скрещивание? 6. Каково значение анализирующего скрещивания в генетике?

7. Как происходит наследование двух признаков? 8. Каковы цитогенетические основы закона независимого наследования признаков? 9. В чём суть анализирующего скрещивания?

10. В каких отраслях деятельности знание законов Менделя имеет особое значение?

Правило независимого наследования признаков 2020 год

Изучение наследования одной пары аллелей позволило Менделю установить ряд важных генетических закономер­ностей: доминирование, неизменность рецессивных аллелей у гибридов, расщепление потомства гибридов Ао изучаемому признаку в отношении 3:1. Явление расщепления позво­лило предположить, что гаметы генетически чисты, т. е. содержат только один ген из аллельной пары.

Однако организмы отличаются друг от друга по многим признакам. Установить закономерности наследования двух и более пар альтернативных признаков, гены которых нахо­дятся в разных парах гомологичных хромосом, можно пу­тем дигибридного или полигибридного скрещивания.

Дигибридным называют скрещивание, при котором рассматривается наследование и производится точный качественный учет потомства по двум парам альтернативных признаков, а точнее, по взаимоисключающим вариантам обоих признаков.

Для дигибридного скрещивания Мендель взял гомозиготные растения гороха, отличающиеся по двум генам, определяющим окраску семян (желтые и зеленые) и форму семян (гладкие и морщинистые). Доминантные признаки — желтая окраска (А) и гладкая форма (В) семян. Каждое растение образует один сорт гамет по изучаемым аллелям. При слиянии этих гамет все потомство будет единообраз­ным.

При образовании гамет у дигибрида из каждой пары ал­лельных генов, расположенных в различных парах гомоло­гичных хромосом, в гамету попадает только один, при этом вследствие случайности расхождения отцовских и материн­ских хромосом в первом делении мейоза ген А может с рав­ной вероятностью попасть в одну гамету с геном В или с ге­ном Ь. Точно так же как и ген а может объединиться в одной гамете с геном В или Ь. Поскольку в каждом организме об­разуется много половых клеток, в силу статистических закономерностей у гибрида — дигетерозиготного организма, образуются четыре сорта гамет в одинаковом количестве (по 25%): AB, Ab, aB, ab.

При оплодотворении гаметы соединяются по правилам случайных сочетаний, но с равной вероятностью для каж­дой. В образующихся зиготах возникают различные комби­нации генов.

Независимое распределение признаков в потомстве и воз­никновение различных комбинаций генов, определяющее развитие этих признаков, при дигибридном скрещивании возможно лишь в том случае, если пары аллельных генов расположены в разных гомологичных хромосомах.

Теперь можно сформулировать третий закон Менделя: при скрещивании двух гомозиготных особей, отличающих­ся друг от друга по двум и более парам альтернативных признаков, гены и соответствующие им признаки на­следуются независимо друг от друга и комбинируются во всех возможных сочетаниях.

На законах Менделя основан анализ расщепления и в бо­лее сложных случаях — при различиях особей по трем, четырем и более парам признаков.

Если родительские формы различаются по одной паре признаков , во втором поколении наблюдается расщепление 3:1, для дигибридного скрещивания это будет 9:3:3:1. Можно рассчитать также число сортов гамет , образующих ­ ся у гибридов , используя специальную ф ормулу.

У дигетерозиготы АаВЬ — четыре сорта гамет, или 2 2 — АВ, АЬ, аВ и ab .

У тригетерозиготы АаВЬСс — восемь сортов гамет, или 2 3 — ABC , АВс, AbC , Abe , аВС, аВс, аЬС и abc . Общая фор­мула расчета гамет у полигибридов — 2 П , где п — число ге­терозиготных пар генов в генотипе.

Анализирующее скрещивание. Разработанный Менде­лем гибридологический метод изучения наследственности позволяет установить, гомозиготен или гетерозиготен орга­низм, имеющий доминантный фенотип по исследуемому гену (или исследуемым генам). Для этого скрещивают особь с не­известным генотипом и организм, гомозиготный по рецес­сивной аллели (аллелям), имеющий рецессивный фенотип.

Если доминантная особь гомозиготна, потомство от та­кого скрещивания будет единообразным и расщепления не произойдет.

Ссылка на основную публикацию
Adblock
detector