Закон независимого наследования признаков это какой 2020 год
Закон независимого наследования признаков это какой 2020 год
закон независимого наследования признаков — nepriklausomo požymių paveldėjimo dėsnis statusas T sritis augalininkystė apibrėžtis Trečiasis Mendelio dėsnis, kuriuo skelbiama, kad genai, lemiantys įvairius požymius ir esantys skirtingose chromosomose, paveldimi nepriklausomai vienas nuo kito … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
закон независимого комбинирования признаков — nepriklausomo požymių paveldėjimo dėsnis statusas T sritis augalininkystė apibrėžtis Trečiasis Mendelio dėsnis, kuriuo skelbiama, kad genai, lemiantys įvairius požymius ir esantys skirtingose chromosomose, paveldimi nepriklausomai vienas nuo kito … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
Закон доминирования признаков — Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия
Закон единообразия гибридов первого поколения — Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия
Закон единообразия гибридов — Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия
Закон расщепления — Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия
третий закон Менделя — nepriklausomo požymių paveldėjimo dėsnis statusas T sritis augalininkystė apibrėžtis Trečiasis Mendelio dėsnis, kuriuo skelbiama, kad genai, lemiantys įvairius požymius ir esantys skirtingose chromosomose, paveldimi nepriklausomai vienas nuo kito … Žemės ūkio augalų selekcijos ir sėklininkystės terminų žodynas
Независимое наследование признаков — Закон независимого наследования каждая пара признаков наследуется независимо от других пар и дает расщепление 3:1 по каждой паре (как и при моногибридном скрещивании). Пример: при скрещивании растений гороха с желтыми и гладкими семенами… … Википедия
Менделевское расщепление — Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия
Менделевское ращепление — Законы Менделя набор основных положений, касающихся механизмов передачи наследственных признаков от родительских организмов к их потомкам; эти принципы лежат в основе классической генетики. Обычно в русскоязычных учебниках описывают три закона,… … Википедия
Законы независимого наследования признаков. Законы Менделя. Генетика
В результате исследований ученых К. Корренса, Г. де Фриза, Э. Чермака в 1900 году были «переоткрыты» законы генетики, сформулированные еще в 1865 году родоначальником науки наследственности – Грегором Менделем. В своих опытах естествоиспытатель применил гибридологический метод, благодаря которому были сформулированы принципы наследования признаков и некоторых свойств организмов. В данной статье мы рассмотрим основные закономерности передачи наследственности, изучаемые генетиком.
Г. Мендель и его исследования
Применение гибридологического метода позволило ученому установить ряд закономерностей, впоследствии названных законами Менделя. Например, им было сформулировано правило единообразия гибридов первого поколения (первый закон Менделя). Он указывал на факт проявления у гибридов F1 только одного признака, контролируемого доминантным геном. Так, при скрещивании растений посевного гороха, сорта которого различались цветом семян (желтые и зеленые), все гибриды первого поколения имели только желтое окрашивание семян. Более того, все эти особи имели также и одинаковый генотип (являлись гетерозиготами).
Закон расщепления
Продолжая скрещивать между собой особи, взятые из гибридов первого поколения, Мендель получил в F2 расщепление признаков. Другими словами, фенотипически были выявлены растения с рецессивным алеллем исследуемого признака (зеленой окраской семян) в количестве одной трети от всех гибридов. Таким образом, установленные законы независимого наследования признаков позволили Менделю проследить механизм передачи как доминантных, так и рецессивных генов в нескольких поколениях гибридов.
Ди- и полигибридное скрещивание
В последующих экспериментах Мендель усложнил условия их проведения. Теперь, для скрещивания брались растения, отличающиеся как двумя, так и большим количеством пар альтернативных признаков. Ученый проследил принципы наследования доминантных и рецессивных генов и получил результаты расщепления, которые можно представить общей формулой (3:1) n , где n – количеств пар альтернативных признаков, которыми отличаются родительские особи. Так, для дигибридного скрещивания расщепление по фенотипу у гибридов второго поколения будет иметь вид: (3:1) 2 =9:6:1 или 9:3:3:1. То есть у гибридов второго поколения можно наблюдать четыре вида фенотипов: растения с желтыми гладкими (9/16 частей), с желтыми морщинистыми (3/16), с зелеными гладкими (3/16) и с зелеными морщинистыми семенами (1/16 часть). Таким образом, законы независимого наследования признаков получили свое математическое подтверждение, и полигибридное скрещивание стали рассматривать как несколько моногибридных – «накладывающихся» друг на друга.
Виды наследования
В этих случаях несколько признаков у одной особи наследуются вместе, так как контролируются генами, локализованными в одной хромосоме и расположенными в ней рядом – друг за другом. Они образуют группы сцепления, количество которых равно гаплоидному набору хромосом. К примеру, у человека кариотип составляет 46 хромосом, что соответствует 23 группам сцепления. Было установлено, что чем меньше расстояние между генами в хромосоме, тем реже между ними возникает процесс кроссинговера, который приводит к явлению наследственной изменчивости.
Как наследуются гены, локализованные в Х-хромосоме
Продолжим изучать закономерности наследования, подчиняющиеся хромосомной теории Моргана. Генетическими исследованиями было установлено, что как у человека, так и у животных (рыб, птиц, млекопитающих) присутствует группа признаков, на механизм наследования которых влияет пол особи. Например, окраска шерсти у кошек, цветное зрение и свертываемость крови у человека контролируются генами, расположенными в половой Х-хромосоме. Так дефекты соответствующих генов у человека фенотипически проявляются в форме наследственных заболеваний, называемых генными. К ним относятся гемофилия и дальтонизм. Открытия Г. Менделя и Т. Моргана позволили применять законы генетики в таких важнейших областях человеческого общества, как медицина, сельское хозяйство, селекция животных, растений и микроорганизмов.
Взаимосвязь между генами и определяемыми ими свойствами
Благодаря современным генетическим исследованиям, было установлено, что законы независимого наследования признаков подлежат дальнейшему расширению, так как отношение «1 ген – 1 признак», лежащее в их основе, не является универсальным. В науке стали известны случаи множественного действия генов, а также взаимодействия неалелльных их форм. К таким видам относится эпистаз, комплиментарность, полимерия. Так было установлено, что количество пигмента кожи мелатонина, отвечающее за её цвет, контролируется целой группой наследственных задатков. Чем больше в генотипе человека доминантных генов, отвечающих за синтез пигмента, тем темнее кожа. Этот пример иллюстрирует такое взаимодействие, как полимерия. У растений данная форма наследования присуща видам семейства злаковых, у которых окраска зерновки контролируется группой полимерных генов.
Таким образом, у каждого организма генотип представлен целостной системой. Она сформировалась в результате исторического развития биологического вида – филогенеза. Состояние большинства признаков и свойств особи — это результат взаимодействия генов, как аллельных, так и неаллельных, а сами они могут влиять на развитие сразу нескольких признаков организма.
ЗАКОН НЕЗАВИСИМОГО НАСЛЕДОВАНИЯ ПРИЗНАКОВ
Лекция-6
План:ПОЛИГИБРИДНОЕ СКРЕЩИВАНИЕ
ВЗАИМОДЕЙСТВИЕ НЕАЛЛЕЛЬНЫХ ГЕНОВ
Установив закономерности наследования признаков при моногибридном скрещивании, Мендель приступил к проведению ди-гибридного скрещивания. Он отобрал два сорта гороха, которые отличались по двум парам альтернативных признаков. Одна из них определяла форму семян: круглая (АА) или морщинистая (аа), другая — окраску: желтая (ВВ) или зеленая (bb). При опылении растений с круглыми желтыми семенами (ААВВ) пыльцой сорта с морщинистыми зелеными семенами (aabb) все семена гибридов первого поколения оказались круглыми и желтыми (АаВЬ):
р О ААВВ круглые желтые х О aabb морщинистые зеленые
Доминировали та же форма и тот же цвет семян, что и при моногибридном скрещивании. При самоопылении 15 гибридных растений из Fi с круглыми желтыми семенами (АаВЬ х АаВЬ) во втором поколении было получено 556 семян, которые по парам признаков распределились в следующем количественном соотношении: круглых желтых —315, круглых зеленых— 108, морщинистых желтых — 101, морщинистых зелены*—32. Мендель Принял число 32 за единицу и получил формулу расщепления по фенотипу в F2 при дигибридном скрещивании — 9 круглых желтых : 3 круглых зеленых : 3 морщинистых желтых : 1 морщинистую зеленую. Подсчет отдельно по каждой паре признаков показал, что по форме 423 растения были с круглыми, 133 с морщинистыми семенами, отношение, близкое 3:1; по окраске 416 растений было с желтыми и 140 с зелеными семенами, отношение также 3:1.
Расщепление по каждой паре признаков шло так же, как и при моногибридном скрещивании. Мендель делает вывод о том, что при дигибридном скрещивании в F2 наблюдается сочетание двух моногибридных расщеплений. При сочетании двух моногибридных расщеплений у Fi (AaBb) должно происходить независимое^, распределение в половые клетки аллельных генов по одному из каждой пары. Это приведет к образованию четырех типов гамет (ЛВ, Ab, аВ, ab) в равном числе.
Ниже приводится решетка, предложенная Р. Пеннетом, где вверху по горизонтали и слева по вертикали помещены гаметы родителей, а в центральной части — генотипы потомков F2-
Расщепление гибридов F2 по генотипу дает 9 классов: IAABR2 AaBB-.2AABk4AaBb:lAAbb:2Aabb:laaBB:2aaBb:laabb. По фенотипу образуется четыре класса в отношении: 9 частей круглых желтых (AABB, lAaBB, lAABb, ААаВЬ), три части круглых морщинистых (lAAbb, 2Aabb), три части морщинистых желтых (ХааВВ, 2ааВЬ), одна часть морщинистых зеленых (aabb).
Анализ по фенотипу показывает, что по форме семян на 12 частей круглых наблюдается 4 части морщинистых (3:1), по окраске на 12 частей желтых —4 зеленых (3:1). Следовательно, во втором поколении дигибридного скрещивания наследование по одной паре признаков (форме семян) идет независимо от наследования по другой паре (окраске семян).
У гибридов F2 наблюдается сочетание признаков во всех возможных комбинациях. Появляются потомки, имеющие признаки обеих родительских форм, например растения с желтыми морщинистыми и зелеными гладкими семенами.
Мендель проверил путем самоопыления генотип всех растений F2 и подтвердил, что расщепление по генотипу при дигибридном скрещивании является результатом независимого комбинирования двух отдельных расщеплений по генотипу при моногибридном скрещивании. Получение формулы расщепления показано в таблице 2, где вверху по горизонтали дано расщепление по генотипу, определяющее форму семян, а по вертикали — определяющее окраску семян.
2. Вывод формулы расщепления по генотипу при дигибридном
Расщепление | По одной паре аллелей | ||
по генотипу | АА | 2Аа | аа |
По другой паре | |||
аллелей | |||
ВВ | 1ААВВ | 14а В В | laaBB |
2ВЬ | 2ЛЛВЬ | 4АаВЬ | 2ааВЪ |
ЬЬ | lAAbb | 2Aabb | laabb |
Примечание. В центральной части таблицы показано расщепление по генотипу одновременно по двум парам признаков. Оно имеет такой вид: ХААВВ + + lAABb + lAAbb + lAaBB + AaBb + lAabb + laaBB + laaBb + laabb.
Мендель показал, что независимое наследование признаков обусловлено независимым наследованием разных пар аллелей. В основе независимого наследования разных пар аллелей (наследственных задатков) лежит независимое комбинирование хромосом при образовании гамет.
Правильность своих выводов о независимом комбинировании генов и признаков Мендель подтвердил путем проведения анализирующего скрещивания. Он скрестил гибридные растения Fi с круглыми желтыми семенами (АаВЬ) с отцовским растением, гомозиготным по рецессивным признакам морщинистой формы семян и зеленой их окраски (aabb). У гибрида Fi при независимом комбинировании генов равновероятно образование четырех сортов гамет (АВ, Ab, aB, ab), у отцовского растения образуются гаметы только одного сорта (ab). Наследование идет по следующей схеме:
р О АаВЬ круглые желтые х О aabb морщинистые зеленые
Было получено потомство четырех фенотипов: круглые желтые (АаВЬ), круглые зеленые (Aabb), морщинистые желтые (ааВЬ), морщинистые зеленые (aabb). Потомков ‘каждого типа было получено одинаковое число — по 25 %. Так как у отцовского растения половые клетки были одинаковые — ab, то равное число особей с каждым фенотипом является результатом того, что гибриды Fi (АаВЬ) образовали половые клетки каждого типа (AB, Ab, аВ, ab) в равном количестве. Это возможно только при независимом комбинировании генов.
На основании опытов по дигибридному скрещиванию был установлен закон независимого наследования признаков (называют также — независимого наследования аллелей разных генов).
Закон независимого наследования признаков состоит в том, что во втором поколении каждая пара аллельных генов и признаков, определяемых ими, ведет себя независимо от других пар аллельных генов и признаков. При этом возникают всевозможные сочетания в определенных числовых соотношениях по фенотипу и генотипу. При дигибридном скрещивании, при полном доминировании, соотношение по фенотипу будет 9:3:3:1, при тригибридном скрещивании будет свое определенное соотношение и т. д.
Разберем пример дигибридного скрещивания применительно к животным. Скрестим свиноматку породы ландрас белую с висячими ушами с хряком беркширской породы черным со стоячими ушами. Одна пара признаков характеризует масть (белая или черная), другая пара — форму ущей (висячие или стоячие). Ген доминантного признака белой масти обозначим прописной буквой А, а аллельный ген рецессивной черной масти — строчной буквой а. Ген доминирующих висячих ушей обозначим буквой Д ген стоячих ушей — Ь. Допустим, что аллельные гены по указанным парам признаков находятся в разных парах хромосом’ (рис. 10). Оба родителя гомозиготны: мать по доминантным признакам белой масти и висячих ушей (ААВВ), отец по рецессивным признакам черной масти и стоячих ушей (aabb). В период образования половых клеток при мейозе из каждой пары гомологичных хромосом в гамету придет только одна. Поскольку родители гомозиготны, то у каждого из них будут все гаметы одного типа: у свиноматки АВ, у хряка ab.
В первом поколении в соответствии с первым законом Менделя все свиньи по фенотипу будут одинаковыми: белыми, с висячими ушами, по генотипу дигетерозиготны, т. е. гетерозиготны по обеим парам признаков (АаВЬ).
В гибридах F2, которые получают путем спаривания животных Fi между собой, наблюдается расщепление. Предположим, что одна пара аллельных генов А и а находится в более длинных гомологичных хромосомах, другая пара В и Ъ — в более коротких. В результате мейоза из каждой пары гомологичных хромосом в каждую половую клетку пойдет только одна. Аллели Аи а
Рис. 10. Схема скрещивания белой с висячими ушами сяиноматки с черным
со стоячими ушами хряком
разойдутся, то же самое произойдет и с аллелями В и Ъ. Расхождение в гаметы хромосом из каждой пары происходит независимо, поэтому аллель А может уйти с равной вероятностью как в те гаметы, куда ушел аллель /?, так и в те, куда ушел аллель Ь. Аллель а также с равной вероятностью может попасть в гаметы как с аллелем В, так и с аллелем Ь. В результате как хряки, так и свиноматки из F[ образуют по четыре сорта гамет: АВ, АЪ, аВ, аЪ в равном количестве.
Каждый из спермиев может оплодотворить любую из яйцеклеток с одинаковой вероятностью. Получается 16 возможных сочетаний гамет отца и матери. Результаты этой случайной встречи гамет хорошо видны при использовании решетки Пен-нета. В верхней горизонтальной строке как заголовки записаны типы гамет одного родителя, а слева вертикально, как заголовки строчек, расположены типы гамет другого родителя. В каждый квадрат на пересечении столбца и строчки записаны генотип и фенотип потомка, определяемые исходя из сочетаний гамет, стоящих в заголовках. В заголовках располагают сначала гаметы с доминирующими генами, затем с доминирующим и рецессивным и в конце с рецессивными. При записи генотипа каждого потомка сначала располагают гены одной аллельной пары, затем другой, рядом указывают фенотип. Затем подсчитывают особей с разными фенотипами и генотипами.
Из данных решетки видно, что в F2 среди особей с разным фенотипом наблюдается следующее количественное соотношение: 9 частей белых с висячими ушами; 3 части белых со стоячими ушами; 3 части черных с висячими ушами; 1 часть черных со стоячими ушами. Рассматривая каждую пару признаков отдельно, находим, что на 12 белых свиней приходится 4 черные (отношение 3:1) и, с другой стороны, на 12 свиней с висячими ушами — 4 со стоячими (отношение 3:1).
Таким образом, каждая пара признаков при наследовании ведет себя независимо от другой пары, и только в результате их свободного комбинирования наблюдается характерное для ди-гибридного расщепления соотношение фенотипов в F2 — 9:3:3:1, которое можно рассматривать как результат сочетания двух моногибридных расщеплений (3:1 и 3:1).
Расщепление по генотипу во втором поколении точно такое же, как установил Мендель на растениях гороха.
Не нашли то, что искали? Воспользуйтесь поиском:
4. ЗАКОН НЕЗАВИСИМОГО КОМБИНИРОВАНИЯ (НАСЛЕДОВАНИЯ) ПРИЗНАКОВ (ТРЕТИЙ ЗАКОН МЕНДЕЛЯ)
Этот закон говорит о том, что каждая пара альтернативных при-знаков ведет себя в ряду поколений независимо друг от друга, в результате чего среди потомков первого поколения (т.е. в поколении F2) в определенном соотношении появляются особи с новыми (по сравнению с родительскими) комбинациями признаков.
Парадоксально, но в современной науке огромное внимание уделяется не столько самому третьему закону Менделя в его исходной формулировке, сколько исключениям из него. Закон независимого комбинирования не соблюдается в том случае, если гены, контролирующие изучаемые признаки, сцеплены, т.е. располагаются по соседству друг с другом на одной и той же хромосоме и передаются по наследству как связанная пара элементов, а не как отдельные элементы. Научная интуиция Менделя подсказала ему, какие признаки дол-
жны быть выбраны для его дигибридных экспериментов, — он выбрал несцепленные признаки. Если бы он случайно выбрал признаки, контролируемые сцепленными генами, то его результаты были бы иными, поскольку сцепленные признаки наследуются не независимо друг от друга.
С чем же связана важность исключений из закона Менделя о независимом комбинировании? Дело в том, что именно эти исключения позволяют определять хромосомные координаты генов (так называемый локус*).
В случаях когда наследуемость определенной пары генов не подчиняется третьему закону Менделя, вероятнее всего эти гены наследуются вместе и, следовательно, располагаются на хромосе в непосредственной близости друг от друга. Зависимое наследование генов называется сцеплением, а статистический метод, используемый для анализа такого наследования, называется методом сцепления. Однако при определенных условиях закономерности наследования сцепленных генов нарушаются. Основная причина этих нарушений — явление крос-синговера, приводящего к перекомбинации (рекомбинации) генов. Биологическая основа рекомбинации заключается в том, что в процессе образования гамет гомологичные хромосомы, прежде чем разъединиться, обмениваются своими участками (подробнее о рекомбинации — в гл. I и IV).
Кроссинговер — процесс вероятностный, а вероятность того, произойдет или не произойдет разрыв хромосомы на данном конкретном участке, определяется рядом факторов, в частности физическим расстоянием между двумя локусами одной и той же хромосомы. Кроссинговер может произойти и между соседними локусами, однако его веро-ятность значительно меньше вероятности разрыва (приводящего к обмену участками) между локусами с большим расстоянием между ними.
Данная закономерность используется при составлении генетических карт хромосом (картировании). Расстояние между двумя локусами оценивается путем подсчета количества рекомбинаций на 100 гамет. Это расстояние считается единицей измерения длины гена и называется сентиморганом в честь генетика Т. Моргана, впервые описавшего группы сцепленных генов у плодовой мушки дрозофилы — любимого объекта генетиков. Если два локуса находятся на значительном рас-стоянии друг от друга, то разрыв между ними будет происходить так же часто, как при расположении этих локусов на разных хромосомах.
Используя закономерности реорганизации генетического матери-
* Напомним, что локусом (лат. locus — место) называется местоположение определенного гена или маркёра (полиморфного участка ДНК) на генетической карте хромосомы. Иногда термин «локус» неоправданно используют как синоним понятия «ген». Такое применение его неточно, поскольку речь может идти о поло-жении не только гена, но и маркёра, находящегося в межгенном пространстве.
ала в процессе рекомбинации, ученые разработали статистический метод анализа, называемый анализом сцепления.
Законы Менделя в их классической форме действуют при наличии определенных условий. К ним относятся:
1) гомозиготность исходных скрещиваемых форм;
2) образование гамет гибридов всех возможных типов в равных соотношениях (обеспечивается правильным течением мейоза; одинаковой жизнеспособностью гамет всех типов; равной вероятностью встречи любых гамет при оплодотворении);
3) одинаковая жизнеспособность зигот всех типов.
Нарушение этих условий может приводить либо к отсутствию расщепления во втором поколении, либо к расщеплению в первом поколении; либо к искажению соотношения различных генотипов и фенотипов. Законы Менделя имеют универсальный характер для всех диплоидных организмов, размножающихся половым способом. В целом они справедливы для аутосомных генов с полной пенетрантностью (т.е. 100-процентной частотой проявления анализируемого признака; 100% пенетрантность подразумевает, что признак выражен у всех носителей аллеля, детерминирующего развитие этого признака) и постоянной экспрессивностью (т.е. постоянной степенью выраженности признака); постоянная экспрессивность подразумевает, что фенотипичес-кая выраженность признака одинакова или примерно одинакова у всех носителей аллеля, детерминирующего развитие этого признака.
Знание и применение законов Менделя имеет огромное значение в медико-генетическом консультировании и определении генотипа фенотипически «здоровых» людей, родственники которых страдали наследственными заболеваниями, а также в выяснении степени риска развития этих заболеваний у родственников больных.