Причиной нарушения закона сцепленного наследования является 2020 год

Московская коллегия адвокатов juristi-online.ru

Биология и медицина

Число генов у каждого организма значительно превышает число хромосом. Следовательно, в каждой хромосоме должно находиться много генов. Каковы же закономерности наследования генов, локализованных в одной хромосоме? Этот вопрос был изучен американским генетиком Т. Морганом и его учениками.

Предположим, что два гена — А и В — находятся в одной хромосоме и организм, взятый для скрещивания, гетерозиготен по этим генам.

Закон Моргана сцепленное наследование признаков

Для перехода к изучению закона Моргана учащимся необходимо сообщить, что после приоткрытая учеными генетических закономерностей в биологической науке стали появляться факты, противоречащие основным положениям Менделя: 1) сцепление генов;

2) взаимодействие генов при формировании наследственных признаков (влияние всего генотипа на развитие признака в онтогенезе); 3) множественное действие генов.

Закон Томаса Моргана

Дальнейшие исследования генетиков показали, что законы Менделя о независимом наследовании признаков при дигибридном скрещивании применимы лишь тогда, когда разные гены располагаются в разных парах гомологичных хромосом. В том случае, если два гена находятся в одной паре гомологичных хромосом, расщепление в потомстве гибридов будет другим.

У любого организма генов значительно больше, чем хромосом.

Методы работы Менделя

Предметом генетики является изучение закономерностей и механизмов, а также структуры и функции реализации генетического материала и генетической информации. Т.о. генетика изучает два фундаментальных свойств живого:

Главным методом генетики является изучение процесса наследования, т.е. процессов передачи генетической информации от родителей к потомкам, включая результаты этой передачи.

Причиной нарушения закона сцепленного наследования является

1. Десятки и сотни тысяч генов в клетке — основа формирования большого разнообразия признаков в организме. Несоответствие числа хромосом (единицы, десятки) числу генов (тысячи, сотни тысяч) — доказательство расположения в каждой хромосоме множества генов.

3. Неприменимость закона независимого наследования к признакам, формирование которых определяется генами, расположенными в одной группе сцепления — хромосоме.

Сцепленное наследование

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.

Закономерности сцепленного наследования генов были изучены в начале 20-х гг. XX в. Т. Морганом и его учениками. Объектом их исследований была плодовая мушка дрозофила (срок ее жизни невелик, но за год можно получить несколько десятков поколений; ее кариотип составляют всего четыре пары хромосом).

Урок по теме: Сцепленное наследование

Оборудование: компьютер, программные диски: «1С: Репетитор. Биология + Варианты ЕГЭ.2006», «Виртуальная школа «Кирилла и Мефодия», репетитор по биологии», мультимедийная презентация по теме урока, карточки письменного опроса, схемы сцепленного наследования, схема генеалогического древа королевы Виктории и заболеваемости потомков гемофилией

На предыдущих уроках мы с вами изучили основополагающие законы генетики – это три закона Г.

Урок с мультимедийным сопровождением — Сцепленное наследование признаков

Мендель изучил наследование только семи пар признаков у душистого горошка. Его законы подтвердились на самых разных видах организмов, т. е. было признано, что эти законы носят всеобщий характер.

Однако в 1906 году английские генетики В. Бетсон и Р. Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружил, что эти признаки не дают независимого распределения в потомстве.

Хромосомная теория наследственности Т

Генетика пола. Генетические механизмы формирования пола. Наследование признаков, сцепленных с полом. Наследование признаков, контролируемых полом. Хромосомная теория наследственности. Механизм сцепления. Биотехнологии и генная инженерия.

омаса Моргана. Установление закономерностей расположения генов в хромосомах. Понятие кроссинговера. Аутосомы и половые хромосомы организма.

Хромосомная теория наследственности

Сцепленное наследование — это сов­местное наследование генов, находящихся в одной хромосоме (т. е. в одной молекуле ДНК). Например, у душистого горошка гены, опреде­ляющие окраску цветков и форму пыльцы, расположены именно таким образом. Они на­следуются сцепленно, поэтому при скрещива­нии у гибридов второго поколения образуются родительские фенотипы в соотношении 3:1, а расщепление 9:3:3:1, характерное для дигибридного скрещивания при независимом на­следовании, не проявляется.

Законы Г.Менделя. Сцепленное наследование. Нарушение сцепления

Читайте также:

  1. I. Общие законы.
  2. IX.- законы де Моргана.
  3. VI.- законы коммутативности (переместительности).
  4. XIII.- законы склеивания.
  5. Административная ответственность за нарушение валютного законодательства
  6. Административная ответственность за нарушение таможенных правил
  7. Административное правонарушение
  8. Административное правонарушение и административная ответственность
  9. Анемии, обусловленные нарушением синтеза и утилизации порфиринов
  10. В машинной арифметике законы коммутативности (переместительный) и дистрибутивности (распределительный) не всегда соблюдаются.
  11. Введение. Основные химические законы. Квантовомеханическая модель атома.
  12. Виды ответственности за нарушение по охране труда.

Законы Г.Менделя. Сцепленное наследование. Генетика пола. Генетика крови. Взаимодействие генов. Хромосомная теория наследственности.

Тема 4.1 Закономерности наследственности

Генетика – наука, изучающая наследственность и изменчивость организмов.

Наследственность – способность организмов передавать из поколения в поколение свои признаки (особенности строения, функции, развития). Изменчивость – способность организмов приобретать новые признаки. Наследственность и изменчивость – два противоположных, но взаимосвязанных свойства организма.

Грегор Мендель скрестил растения гороха с желтыми семенами и растения гороха с зелеными семенами. И те, и другие были чистыми линиями, то есть гомозиготами.

Первый закон Менделя – закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).

Второй закон Менделя – закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определенном числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.

Расщепление– явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть рецессивный. В случае моногибридного скрещивания это соотношение выглядит следующим образом: 1АА:2Аа:1аа, то есть 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании). В случае дигибридного скрещивания – 9:3:3:1 или (3:1) 2 . При полигибридном – (3:1) n .

Читать еще:  Признаки наследования по завещанию 2020 год

Неполное доминирование. Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называется неполным доминированием.

Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.

Г. Мендель провел дигибридное скрещивание растений гороха с желтыми и гладкими семенами и растений гороха с зелеными и морщинистыми семенами (и те, и другие чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании (расщепляется).

Третий закон Менделя – закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идет независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.

Закономерности сцепленного наследования генов были изучены Т.Х. Морганом и его учениками в начале 20-х годов XX века. Объектом их исследований являлась плодовая мушка дрозофила (срок ее жизни невелик, и за год можно получить несколько десятков поколений, ее кариотип составляют всего четыре пары хромосом).

Закон Моргана Гены, локализованные в одной хромосоме, наследуются преимущественно вместе.

Гены, лежащие в одной хромосоме называются сцепленными. Все гены одной хромосомы называются группой сцепления.

В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления – кроссинговер (перекрест хромосом) – обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт – определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генетика пола.Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым, мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как Х- и Y-хромосомы. Женщины имеют две Х-хромосомы, а мужчины одну X- и одну Y-хромосому.

Существует 5 типов хромосомного определения пола:

1) ♀ XX, ♂ ХУ – характерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб.

2) ♀ ХУ, ♂ XX – характерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые).

3) ♀ XX, ♂ Х0 – (0 обозначает отсутствие хромосом) встречается у некоторых насекомых (прямокрылые).

4) ♀ ХО, ♂ XX – встречается у некоторых насекомых (равнокрылые).

5) гаплодиплоидный тип (♀ 2n, ♂ n) встречается, например, у пчел и муравьев: самцы развиваются из неоплодотворенных гаплоидных яйцеклеток (партеногенез), самки – из оплодотворенных диплоидных.

Наследование признаков, гены которых находятся в Х- и Y-хромосомах, называют наследованием, сцепленным с полом. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.

При сочетании XY большинство генов, находящихся в Х-хромосоме, не имеют аллельной пары в Y-хромосоме. Так же гены, расположенные в Y-хромосоме, не имеют аллелей в Х-хромосоме. Такие организмы называются гемизиготными. В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свертываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Генетика крови.По системе АВО у человека 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена I А , I в , I°. Два первых кодоминантны по отношению друг к другу и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии – 4.

I группа II группа А I o I o I А I А I А I О Гомозигота Гомозигота Гетерозигота
III группа В I В I В I В I 0 Гомозигота Гетерозигота
IV группа АВ I А I В Гетерозигота

Кроме того, кровь разных людей может отличаться резус-фактором. Кровь может иметь положительный резус-фактор (Rh + ) или отрицательный резус-фактор (Rh — ). Резус-фактор крови определяет ген R. R + дает информацию о выработке белка (резус положительный белок), а ген R — – не дает. Первый ген доминирует над вторым. Если Rh + кровь перелить человеку с Rh — кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh — женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт.

Читать еще:  Купля продажа мена наследование дарение 2020 год

Взаимодействие генов.Генотип – это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки). Взаимодействовать могут как аллельные гены, так и неаллельные.

Различают 3 формы взаимодействия аллельных генов: полное доминирование, неполное доминирование, кодоминирование.

Полное доминирование – явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.

Неполное доминирование – явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.

Кодоминирование (независимое проявление) – явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и В, являются кодоминантными по отношению друг к другу и оба доминантны по отношению к гену, определяющему группу крови 0.

Различают 4 формы взаимодействия неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.

Кооперация – явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет свое собственное фенотипическое проявление, происходит формирование нового признака.

Комплементарность – явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.

Эпистаз – явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).

Полимерия – явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствуют в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).

В противоположность полимерии наблюдается такое явление, как плейотропия – множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

| следующая лекция ==>
Пластический обмен. Фотосинтез | Виды изменчивости. Мутагенные факторы. Основные методы генетики. Селекция

Дата добавления: 2014-01-07 ; Просмотров: 3741 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Тестовые задания — Урок 43 — Генетика — ОБЩАЯ БИОЛОГИЯ — ТЕОРЕТИЧЕСКИЙ МАТЕРИАЛ ДЛЯ ПОДГОТОВКИ К ЕГЭ

Задание 1: выберите один правильный ответ.

1. Аллельными называются гены

1) расположенные рядом в одной хромосоме

2) определяющие возможность развития одного признака

3) обусловливающие появление только рецессивных признаков

4) обусловливающие появление только доминантных признаков

1) способность одного гена контролировать несколько признаков

2) совокупность внешних и внутренних признаков организма

3) совокупность всех генов организма

4) способность множества генов контролировать один признак

1) совокупность всех генов организма

2) совокупность всех генов популяции

3) гаплоидный набор хромосом

4) совокупность всех генов и признаков организма

4. Г. Мендель на начальном этапе эксперимента использовал в качестве родительских растений гороха

2) гетерозиготные особи

3) особи, гомозиготные по рецессивному гену

4) одну гетерозиготную и одну гомозиготную по рецессивному гену особи

5. Сколько типов гамет образуют гетерозиготные особи

6. Сцепленными называются гены, находящиеся в

1) одной хромосоме

2) гомологичных хромосомах

3) негомологичных хромосомах

4) только в Х-хромосомах

7. Причиной нарушения закона сцепленного наследования является

1) независимое расхождение гомологичных хромосом в I делении мейоза

2) независимое расхождение хроматид во II делении мейоза

3) перекрест хромосом во время мейоза

4) все перечисленные процессы

8. Частота кроссинговера между двумя генами определяется

1) доминантностью одного из генов

2) доминантностью обоих генов

3) рецессивностью обоих генов

4) расстоянием между генами

9. Носителями гена, определяющего развитие гемофилии, являются:

1) чаще мужчины, чем женщины

2) чаще женщины, чем мужчины

3) только мужчины

4) только женщины

10. При менделевском моногибридном скрещивании доля особей с одним рецессивным геном во втором поколении составит

11. При промежуточном характере наследования число возможных фенотипов во втором поколении равно

12. При менделевском дигибридном скрещивании число классов по фенотипу во втором поколении равно

13. Для выявления гетерозиготности гибридной особи нужно скрестить ее с

1) носителем доминантного аллеля

2) носителем рецессивного аллеля

3) гомозиготой по рецессивному аллелю

4) гомозиготой по доминантному аллелю

14. Закон независимого расщепления Г. Менделя выполняется только в том случае, если

1) аллели разных генов находятся в одних и тех же хромосомах

2) аллели разных генов находятся в разных хромосомах

3) аллели рецессивны

4) аллели доминантны

15. Т. Морган является автором закона

1) независимого расщепления

2) чистоты гамет

3) единообразия гибридов первого поколения

4) сцепления генов

Задание 2: выберите три правильных ответа.

16. К особенностям гибридологического метода Г. Менделя можно отнести

1) использование особей, различающихся небольшим количеством признаков

2) изучение альтернативных признаков

3) использование только самоопыляющихся растений

4) использование генетических карт

5) массовый отбор

6) точный количественный учет

17. Гомозиготными организмами называются такие, которые

1) при скрещивании с себе подобными не дают расщепления

2) при скрещивании с себе подобными дают расщепление

3) несут разные аллели одного и того же гена

4) образуют только один сорт гамет

5) образуют несколько сортов гамет

6) несут в себе либо только доминантный, либо только рецессивный ген

18. Гомологичные хромосомы

1) одинаковы по размеру и форме

2) конъюгируют в профазе I мейоза

3) расходятся к полюсам клетки в анафазе I мейоза

4) расходятся к полюсам клетки в анафазе II мейоза

5) располагаются в экваториальной плоскости клетки в метафазе II мейоза

Читать еще:  Наследование вкладов по закону 2020 год

6) имеют одинаковое происхождение

19. К положениям хромосомной теории наследственности Т. Моргана относятся следующие

1) носителями наследственности являются гены, находящиеся в хромосомах

2) при образовании половых клеток в каждую из них попадает только один ген из пары

3) каждый ген имеет определенное место, или локус, в хромосоме

4) мутации возникают за счет изменения фенотипов

5) гены расположены в хромосомах в определенной линейной последовательности

6) между генами как аллельными, так и неаллельными осуществляются разные формы взаимодействия

20. Формами взаимодействия неаллельных генов являются

6) неполное доминирование

Задание 3: установите соответствие между содержанием первого и второго столбцов, где

А — доминантный признак желтой окраски семени

а — рецессивный признак зеленой окраски семени

В —доминантный признак гладкой поверхности семени

в — рецессивный признак морщинистой поверхности семени

А) желтые гладкие семена

Б) зеленые гладкие семена

В) желтые морщинистые семена

Ключи к тестовым заданиям

Библиотека образовательных материалов для студентов, учителей, учеников и их родителей.

Наш сайт не претендует на авторство размещенных материалов. Мы только конвертируем в удобный формат материалы из сети Интернет, которые находятся в открытом доступе и присланные нашими посетителями.

Если вы являетесь обладателем авторского права на любой размещенный у нас материал и намерены удалить его или получить ссылки на место коммерческого размещения материалов, обратитесь для согласования к администратору сайта.

Разрешается копировать материалы с обязательной гипертекстовой ссылкой на сайт, будьте благодарными мы затратили много усилий чтобы привести информацию в удобный вид.

© 2014-2019 Все права на дизайн сайта принадлежат С.Є.А.

Основные положения хромосомной теории наследственности. Сцепленное наследование

Вопрос 1. Что такое сцепленное наследование?
Сцепленное наследование — это совместное наследование генов, находящихся в одной хромосоме (т. е. в одной молекуле ДНК). Например, у душистого горошка гены, определяющие окраску цветков и форму пыльцы, расположены именно таким образом. Они наследуются сцепленно, поэтому при скрещивании у гибридов второго поколения образуются родительские фенотипы в соотношении 3:1, а расщепление 9:3:3:1, характерное для дигибридного скрещивания при независимом наследовании, не проявляется.
При сцепленном наследовании сила сцепления может быть разной. При полном сцеплении в потомстве гибрида появляются организмы только с родительскими сочетаниями признаков, а рекомбинанты отсутствуют. При неполном сцеплении всегда наблюдается в той или иной мере преобладание форм с родительскими признаками. Величина кроссинговера, отражающая силу сцепления между генами, измеряется отношением числа рекомбинантов к общему числу в потомстве от анализирующего скрещивания и выражается в процентах.
Гены расположены в хромосомах линейно, а частота кроссинговера отражает относительное расстояние между ними. За единицу расстояния между двумя генами условно принимают 1% перекреста между ними — эту величину называют морганидой.
Чем дальше друг от друга расположены два гена в хромосомах, тем больше вероятности, что между ними произойдет кроссинговер. Следовательно, по частоте кроссинговера между генами можно судить об относительном расстоянии, разделяющим гены в хромосоме, при этом гены в хромосоме расположены в линейном порядке.
Каждая хромосома в кариотипе человека несет в себе множество генов, которые могут наследоваться совместно.

Вопрос 2. Что представляют собой группы сцепления генов?
Явление совместного наследования генов было впервые описано Пеннетом, назвавшим это явление “притяжением генов”. Томас Хант Морган и его сотрудники подробно изучили явление сцепленного наследования генов и вывели законы сцепленного наследования (1910). Группа сцепления – это совокупность генов, локализованных в одной хромосоме. Число групп сцеплений для каждого вида равно гаплоидному набору хромосом, а точнее – равно количеству пар гомологичный хромосом. У человека половая пара хромосом негомологична, поэтому у женщин групп сцепления – 23, а у мужчин – 24 (22 группы сцепления — аутосомные и две по половым хромосомам Х и У). У гороха 7 групп сцепления (2n = 14), у дрозофилы — 4 группы сцепления (2n = 8).

Вопрос 3. Что является причиной нарушения сцепления генов?
Причиной нарушения сцепления генов является обмен участками гомологичных хромосом в профазе I мейотического деления. Напомним, что на этом этапе парные хромосомы конъюгируют, образуя так называемые биваленты. Формирование бивалентов может привести к перекресту хромосом, что создает возможность обмена гомологичными участками ДНК. Если это происходит, то группы сцепления меняют свое содержание (в них оказываются иные аллели тех же генов) и в потомстве могут появиться особи с фенотипом, отличающимся от родительских.

Вопрос 4. Каково биологическое значение обмена аллельными генами между гомологичными хромосомами?
Кроссинговер – обмен идентичными участками между гомологичными хромосомами, приводящий к рекомбинации наследственных задатков и формированию новых сочетаний генов в группах сцепления.
Перекрест хромосом приводит к перекомбинированию генетического мтериала и формированию новых сочетаний аллелей генов из группы сцепления. При этом увеличивается разнообразие потомков, т. е. повышается наследственная изменчивость, что имеет большое эволюционное значение. Действительно, если, например, у дрозофилы гены, определяющие окраску тела и длину крыльев, находятся на одной хромосоме, то, скрещивая чистые линии серых мух с нормальными крыльями и черных мух с укороченными крыльями, в отсутствие крос-синговера мы никогда не получим иные фенотипы. Существование же перекреста хромосом позволяет появиться (в нескольких процентах случаев) серым мухам с короткими крыльями и черным мухам с нормальными крыльями.

Вопрос 5. Подтверждена ли цитологически теория сцепленного наследования?
Теория сцепленного наследования Томаса Ханта Моргана (1866—1945) подтверждена цитологическими наблюдениями. Было показано, что хромосомы при делении целиком расходятся к разным полюсам клетки. Следовательно, гены, расположенные на одной хромосоме, при мейозе попадают в одну гамету, т.е. действительно наследуются сцепленно.

Ссылка на основную публикацию
Adblock
detector