Полное сцепленное наследование генов 2020 год

Закономерности наследования при полном и неполном сцеплении генов

Сцепленное наследование генов

Г.Мендель проследил наследование семи пар признаков у гороха. Многие исследователи, повторяя опыты Менделя, подтвердили открытые им законы. Было признано, что эти законы носят всеобщий характер. Однако в 1906 г. английские генетики В.Бэтсон и Р.Пеннет, проводя скрещивание растений душистого горошка и анализируя наследование формы пыльцы и окраски цветков, обнаружили, что эти признаки не дают независимого распределения в потомстве. Потомки всегда повторяли признаки родительских форм. Постепенно факты исключений из третьего закона Менделя накапливались. Стало ясно, что не для всех генов характерно независимое распределение в потомстве и свободное комбинирование.

Любой организм обладает многообразием морфологических, физиологических, биохимических и прочих признаков и свойств, причем каждый признак или свойство контролируется одним или несколькими генами, локализованными в хромосомах.

Однако если число генов организма огромно и может исчисляться десятками тысяч, то число хромосом сравнительно невелико и, как правило, измеряется несколькими десятками. Поэтому в каждой паре хромосом локализованы сотни и тысячи аллельных генов, образующих группы сцепления.

Установлено полное соответствие между числом групп сцепления и числом пар хромосом. Например, у кукурузы набор хромосом 2n = 20 и 10 групп сцепления, а у дрозофилы 2n = 8 и 4 группы сцепления, то есть число групп сцепления равно гаплоидному набору хромосом.

Закон Томаса Моргана

Гены, локализованные в одной хромосоме, передаются совместно, и способ их наследования отличается от наследования генов, локализованных в разных парах гомологичных хромосом.

Так, например, при независимом распределении хромосом дигибрид АаВb образует четыре типа гамет (АВ, аВ, Аb, аb), а при условии полного сцепления такой же дигибрид даст только два типа гамет (АВ и аb), так как эти гены расположены в одной хромосоме.

Разработка проблемы сцепленного наследования генов принадлежит школе Т.Моргана (1866–1945). Если Мендель проводил свои опыты на горохе, то для Моргана основным объектом стала плодовая мушка дрозофила. Мушка каждые две недели при температуре 25 °С дает многочисленное потомство. Самец и самка хорошо различимы – у самца брюшко меньше и темнее. Кроме того, они имеют различия по многочисленным признакам и могут размножаться в пробирках на дешевой питательной среде.

Изучая закономерности наследования генов, локализанных в одной и той же хромосоме, Морган пришел к выводу, что они наследуются сцепленно. Это и есть закон Т.Моргана.

Полное и неполное сцепление

Для определения типа наследования двух пар генов (сцепленное или независимое) необходимо провести анализирующее скрещивание и по его результатам сделать вывод о характере наследования генов. Рассмотрим три возможных варианта результатов анализирующего скрещивания.

1) Независимое наследование.

Если в результате анализирующего скрещивания среди гибридов образуется четыре класса фенотипов, значит, гены наследуются независимо.

2) Полное сцепление генов.

При полном сцеплении генов А и В по результатам анализирующего скрещивания обнаруживают-
ся два фенотипических класса гибридов, полностью копирующих родителей.

3) Неполное сцепление генов.

В случае неполного сцепления генов А и В при анализирующем скрещивании появляются четыре фенотипа, два из которых имеют новое сочетание генов: Аbаb; аВаb. Появление подобных форм свидетельствует о том, что дигибрид с гаметами АВ│ и аb│ образует кроссоверные гаметы Аb│ и аВ│. Появление таких гамет возможно только в результате обмена участками гомологичных хромосом, то есть в процессе кроссинговера. Количество кроссоверных гамет значительно меньшее, чем некроссоверных.

Частота перекреста пропорциональна расстоянию между генами. Чем ближе расположены гены в хромосоме, тем теснее сцепление между ними и тем реже они разделяются при перекресте. И наоборот, чем дальше гены отстоят друг от друга, тем слабее сцепление между ними и чаще перекрест. Следовательно, о расстоянии между генами в хромосомах можно судить по частоте перекреста.

Генетические карты

Под генетическим картированием обычно понимают определение положения какого-либо гена по отношению к другим генам.

Рассмотрим порядок составления генетических карт.

1. Установление группы сцепления (то есть определение хромосомы, в которой локализован данный ген). Для этого необходимо иметь хотя бы по одному гену-маркеру в каждой группе сцепления.

2. Нахождение места локализации исследуемого гена в хромосоме. Для этого проводится скрещивание мутантной формы с нормальной и учитывается результат кроссинговера.

3. Определение расстояния между сцепленными генами, что позволяет составлять генетические карты хромосом, на которых указаны порядок расположения генов в хромосомах и относительные расстояния их друг от друга. Чем частота кроссинговера выше, тем на большем расстоянии друг от друга располагаются гены. Если установлено, что между сцепленными генами А и В частота кроссинговера 10%, а между генами В и С – 20%, то очевидно, что расстояние ВС в 2 раза больше, чем АВ. Расстояние между генами выражается в единицах, соответствующих 1% кроссинговера. Эти единицы называют морганидами.

Таким образом, на основе данных о частоте кроссинговера составляются генетические карты.

Основные понятия генетики

Основные понятия генетики

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Генотип — совокупность генов организма.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Гомозиго́та — диплоидный организм или клетка, несущий идентичные аллели гена в гомологичных хромосомах.

Грегором Менделем впервые был установлен факт, свидетельствующий о том, что растения, сходные по внешнему виду, могут резко отличаться по наследственным свойствам. Особи, не дающие расщепления в следующем поколении, получили название гомозиготных.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гемизиго́тным называют диплоидный организм, у которого имеется только один аллель данного гена или один сегмент хромосомы вместо обычных двух. Для организмов, у которых гетерогаметный пол мужской (как у людей и всех остальных млекопитающих), почти все гены, связанные с X хромосомой, гемизиготны у самцов, так как у самцов в норме имеется только одна X хромосома. Гемизиготное состояние аллелей или хромосом используется в генетическом анализе с целью поиска места локализации генов, ответственных за какой-либо признак.

Читать еще:  Наследование доли вклада 2020 год

содержат одинаковый набор генов, сходны по морфологич. признакам, конъюгируют в профазе мейоза. В диплоидном наборе хромосом каждая пара хромосом представлена двумя Г. х., к-рые могут различаться аллелями содержащихся в них генов и обмениваться участками в процессе кроссинговера.

Дата добавления: 2016-12-06 ; просмотров: 4038 | Нарушение авторских прав

Биология

Закон независимого распределения признаков (третий закон Менделя) нарушается в случае, если гены, определяющие разные признаки, находятся в одной хромосоме. Такие гены обычно наследуются совместно, т. е. наблюдается сцепленное наследование. Явление сцепленного наследования было изучено Томасом Морганом и его сотрудниками и поэтому носит название закона Моргана.

Закон Т. Моргана можно сформулировать следующим образом: гены, находящиеся в одной хромосоме, образуют группу сцепления и часто наследуются совместно, при этом частота совместного наследования зависит от расстояния между генами (чем ближе, тем чаще).

Причиной, по которой сцепленное наследование нарушается, является кроссинговер, протекающий в мейозе при конъюгации хромосом. При этом гомологичные хромосомы обмениваются своими участками, и таким образом ранее сцепленные гены могут оказаться в разных гомологичных хромосомах, что обуславливает независимое распределение признаков.

Например, ген A сцеплен с геном B (AB), в гомологичной хромосоме находятся рецессивные аллели соответствующих генов (ab). Если в процессе кроссинговера гомологичные хромосомы почти никогда не обмениваются участками так, что один ген переходит в другую хромосому, а другой остается в прежней, то такой организм образует гаметы только двух типов: AB (50%) и ab (50%). Если же обмен соответствующими участками происходит, то какой-то процент гамет будет содержать гены Ab и aB. Обычно их процент меньше, чем при независимом распределении генов (когда A и B находятся в разных хромосомах). Если при независимом распределении всех типов гамет (AB, ab, Ab, aB) будет по 25%, то в случае сцепленного наследования гамет Ab и aB будет меньше. Чем их меньше, тем ближе гены расположены друг к другу в хромосоме.

Особо выделяют сцепленное с полом наследование, когда исследуемый ген находится в половой (обычно X) хромосоме. В данном случае изучается наследование одного признака, а вторым выступает пол. Если наследуемый признак сцеплен с полом, то он по-разному наследуется при реципрокных скрещиваниях (когда признаком сначала обладает родитель женского пола, потом мужского).

Если мать обладает генотипом aa, а у отца проявляется доминантный признак (точно есть один ген A), то в случае сцепления с полом все дочери будут иметь доминантный признак (в любом случае получат от отца его единственную X-хромосому, а все сыновья — рецессивный (от отца достается Y-хромосома, в которой нет соответствующего гена, а от матери — в любом случае ген a). Если бы признак не был сцеплен с полом, то среди обоих полов детей могли быть обладатели доминантного признака.

Когда исследуемые гены сцеплены в аутосоме, то такое сцепление называют аутосомным. Сцепление называют полным, если родительские комбинации аллелей не нарушаются из поколение в поколение. Такое бывает очень редко. Обычно наблюдается неполное сцепленое наследование, которое нарушает как третий закон Менделя, так и закон Моргана (в его сокращенной формулировке: гены, находящиеся в одной хромосоме наследуются совместно).

Гены в хромосоме расположены линейно. Расстояние между ними измеряется в сантиморганах (сМ). 1 сМ соответствует наличию 1% кроссоверных гамет. Проводя различные скрещивания и статистически анализируя потомков, ученые выявляют сцепленные гены, а также расстояние между ними. На основе полученных данных строятся генетические карты, в которых отражается локализация генов в хромосомах.

Законы Г.Менделя. Сцепленное наследование. Нарушение сцепления

Читайте также:

  1. I. Общие законы.
  2. IX.- законы де Моргана.
  3. VI.- законы коммутативности (переместительности).
  4. XIII.- законы склеивания.
  5. Административная ответственность за нарушение валютного законодательства
  6. Административная ответственность за нарушение таможенных правил
  7. Административное правонарушение
  8. Административное правонарушение и административная ответственность
  9. Анемии, обусловленные нарушением синтеза и утилизации порфиринов
  10. В машинной арифметике законы коммутативности (переместительный) и дистрибутивности (распределительный) не всегда соблюдаются.
  11. Введение. Основные химические законы. Квантовомеханическая модель атома.
  12. Виды ответственности за нарушение по охране труда.

Законы Г.Менделя. Сцепленное наследование. Генетика пола. Генетика крови. Взаимодействие генов. Хромосомная теория наследственности.

Тема 4.1 Закономерности наследственности

Генетика – наука, изучающая наследственность и изменчивость организмов.

Наследственность – способность организмов передавать из поколения в поколение свои признаки (особенности строения, функции, развития). Изменчивость – способность организмов приобретать новые признаки. Наследственность и изменчивость – два противоположных, но взаимосвязанных свойства организма.

Грегор Мендель скрестил растения гороха с желтыми семенами и растения гороха с зелеными семенами. И те, и другие были чистыми линиями, то есть гомозиготами.

Первый закон Менделя – закон единообразия гибридов первого поколения (закон доминирования): при скрещивании чистых линий у всех гибридов первого поколения проявляется один признак (доминантный).

Второй закон Менделя – закон расщепления признаков: гибриды первого поколения при их скрещивании расщепляются в определенном числовом соотношении: особи с рецессивным проявлением признака составляют 1/4 часть от общего числа потомков.

Расщепление– явление, при котором скрещивание гетерозиготных особей приводит к образованию потомства, часть которого несет доминантный признак, а часть рецессивный. В случае моногибридного скрещивания это соотношение выглядит следующим образом: 1АА:2Аа:1аа, то есть 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании). В случае дигибридного скрещивания – 9:3:3:1 или (3:1) 2 . При полигибридном – (3:1) n .

Неполное доминирование. Доминантный ген не всегда полностью подавляет рецессивный ген. Такое явление называется неполным доминированием.

Статистический характер явлений расщепления. Из гипотезы чистоты гамет следует, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. При случайном характере соединения гамет общий результат оказывается закономерным. Отсюда следует, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях. Это касается и случая полигибридного скрещивания. Точное выполнение числовых соотношений при расщеплении возможно лишь при большом количестве изучаемых гибридных особей. Таким образом, законы генетики носят статистический характер.

Читать еще:  Завещание с лишением права наследования 2020 год

Г. Мендель провел дигибридное скрещивание растений гороха с желтыми и гладкими семенами и растений гороха с зелеными и морщинистыми семенами (и те, и другие чистые линии), а затем скрестил их потомков. В результате им было установлено, что каждая пара признаков при расщеплении в потомстве ведет себя так же, как при моногибридном скрещивании (расщепляется).

Третий закон Менделя – закон независимого комбинирования (наследования) признаков: расщепление по каждому признаку идет независимо от других признаков.

Цитологической основой независимого комбинирования является случайный характер расхождения гомологичных хромосом каждой пары к разным полюсам клетки в процессе мейоза независимо от других пар гомологичных хромосом. Этот закон справедлив только в том случае, когда гены, отвечающие за развитие разных признаков, находятся в разных хромосомах. Исключения составляют случаи сцепленного наследования.

Развитие генетики показало, что не все признаки наследуются в соответствии с законами Менделя. Так, закон независимого наследования генов справедлив только для генов, расположенных в разных хромосомах.

Закономерности сцепленного наследования генов были изучены Т.Х. Морганом и его учениками в начале 20-х годов XX века. Объектом их исследований являлась плодовая мушка дрозофила (срок ее жизни невелик, и за год можно получить несколько десятков поколений, ее кариотип составляют всего четыре пары хромосом).

Закон Моргана Гены, локализованные в одной хромосоме, наследуются преимущественно вместе.

Гены, лежащие в одной хромосоме называются сцепленными. Все гены одной хромосомы называются группой сцепления.

В некотором проценте случаев сцепление может нарушаться. Причина нарушения сцепления – кроссинговер (перекрест хромосом) – обмен участками хромосом в профазе I мейотического деления. Кроссинговер приводит к генетической рекомбинации. Чем дальше друг от друга расположены гены, тем чаще между ними происходит кроссинговер. На этом явлении основано построение генетических карт – определение последовательности расположения генов в хромосоме и примерного расстояния между ними.

Генетика пола.Хромосомы, одинаковые у обоих полов, называются аутосомами. Хромосомы, по которым, мужской и женский пол отличаются друг от друга, называются половыми, или гетерохромосомами. В клетке человека содержится 46 хромосом или 23 пары: 22 пары аутосом и 1 пара половых хромосом. Половые хромосомы обозначают как Х- и Y-хромосомы. Женщины имеют две Х-хромосомы, а мужчины одну X- и одну Y-хромосому.

Существует 5 типов хромосомного определения пола:

1) ♀ XX, ♂ ХУ – характерен для млекопитающих (в том числе и для человека), червей, ракообразных, большинства насекомых (в том числе для дрозофил), большинства земноводных, некоторых рыб.

2) ♀ ХУ, ♂ XX – характерен для птиц, пресмыкающихся, некоторых земноводных и рыб, некоторых насекомых (чешуекрылые).

3) ♀ XX, ♂ Х0 – (0 обозначает отсутствие хромосом) встречается у некоторых насекомых (прямокрылые).

4) ♀ ХО, ♂ XX – встречается у некоторых насекомых (равнокрылые).

5) гаплодиплоидный тип (♀ 2n, ♂ n) встречается, например, у пчел и муравьев: самцы развиваются из неоплодотворенных гаплоидных яйцеклеток (партеногенез), самки – из оплодотворенных диплоидных.

Наследование признаков, гены которых находятся в Х- и Y-хромосомах, называют наследованием, сцепленным с полом. В половых хромосомах могут находиться гены, не имеющие отношения к развитию половых признаков.

При сочетании XY большинство генов, находящихся в Х-хромосоме, не имеют аллельной пары в Y-хромосоме. Так же гены, расположенные в Y-хромосоме, не имеют аллелей в Х-хромосоме. Такие организмы называются гемизиготными. В этом случае проявляется рецессивный ген, имеющийся в генотипе в единственном числе. Так X-хромосома может содержать ген, вызывающий гемофилию (пониженную свертываемость крови). Тогда все мужские особи, получившие эту хромосому, будут страдать этим заболеванием, так как Y-хромосома не содержит доминантного аллеля.

Генетика крови.По системе АВО у человека 4 группы крови. Группа крови определяется геном I. У человека группу крови обеспечивают три гена I А , I в , I°. Два первых кодоминантны по отношению друг к другу и оба доминантны по отношению к третьему. В результате у человека по генетике 6 групп крови, а по физиологии – 4.

I группа II группа А I o I o I А I А I А I О Гомозигота Гомозигота Гетерозигота
III группа В I В I В I В I 0 Гомозигота Гетерозигота
IV группа АВ I А I В Гетерозигота

Кроме того, кровь разных людей может отличаться резус-фактором. Кровь может иметь положительный резус-фактор (Rh + ) или отрицательный резус-фактор (Rh — ). Резус-фактор крови определяет ген R. R + дает информацию о выработке белка (резус положительный белок), а ген R — – не дает. Первый ген доминирует над вторым. Если Rh + кровь перелить человеку с Rh — кровью, то у него образуются специфические агглютинины, и повторное введение такой крови вызовет агглютинацию. Когда у Rh — женщины развивается плод, унаследовавший у отца положительный резус, может возникнуть резус-конфликт.

Взаимодействие генов.Генотип – это не просто механический набор генов. Это исторически сложившаяся система из взаимодействующих между собой генов. Точнее, взаимодействуют не сами гены (участки молекул ДНК), а образуемые на их основе продукты (РНК и белки). Взаимодействовать могут как аллельные гены, так и неаллельные.

Различают 3 формы взаимодействия аллельных генов: полное доминирование, неполное доминирование, кодоминирование.

Полное доминирование – явление, когда доминантный ген полностью подавляет работу рецессивного гена, в результате чего развивается доминантный признак.

Неполное доминирование – явление, когда доминантный ген не полностью подавляет работу рецессивного гена, в результате чего развивается промежуточный признак.

Кодоминирование (независимое проявление) – явление, когда в формировании признака у гетерозиготного организма участвуют обе аллели. У человека серией множественных аллелей представлен ген, определяющий группу крови. При этом гены, обусловливающие группы крови А и В, являются кодоминантными по отношению друг к другу и оба доминантны по отношению к гену, определяющему группу крови 0.

Различают 4 формы взаимодействия неаллельных генов: кооперация, комплементарность, эпистаз и полимерия.

Кооперация – явление, когда при взаимном действии двух доминантных неаллельных генов, каждый из которых имеет свое собственное фенотипическое проявление, происходит формирование нового признака.

Комплементарность – явление, когда признак развивается только при взаимном действии двух доминантных неаллельных генов, каждый из которых в отдельности не вызывает развитие признака.

Эпистаз – явление, когда один ген (как доминантный, так и рецессивный) подавляет действие другого (неаллельного) гена (как доминантного, так и рецессивного). Ген-подавитель (супрессор) может быть доминантным (доминантный эпистаз) или рецессивным (рецессивный эпистаз).

Читать еще:  Порядок наследования несовершеннолетними детьми 2020 год

Полимерия – явление, когда несколько неаллельных доминантных генов отвечают за сходное воздействие на развитие одного и того же признака. Чем больше таких генов присутствуют в генотипе, тем ярче проявляется признак. Явление полимерии наблюдается при наследовании количественных признаков (цвет кожи, вес тела, удойность коров).

В противоположность полимерии наблюдается такое явление, как плейотропия – множественное действие гена, когда один ген отвечает за развитие нескольких признаков.

| следующая лекция ==>
Пластический обмен. Фотосинтез | Виды изменчивости. Мутагенные факторы. Основные методы генетики. Селекция

Дата добавления: 2014-01-07 ; Просмотров: 3729 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Химия, Биология, подготовка к ГИА и ЕГЭ

Сцепленное наследование

Автор статьи — Саид Лутфуллин.

После открытия законов наследственности Менделя стали замечать, что не всегда эти законы срабатывают.

Например: скрестили дигетерозиготную самку дрозофилы с серым телом и нормальными крыльями с самцом с черным телом и укороченными крыльями .

Серое тело и нормальные крылья – доминантные признаки.

По законам Менделя схема скрещивания такая:

Но практический результат скрещивания отличается.

Как правило, в потомстве наблюдается расщепление 1:1,

фенотипы потомства: серое тело, нормальные крылья и черное тело, укороченные крылья .

Не срабатывает закон независимого наследования. Почему же так? Неужели законы Менделя действительно не работают? Конечно же, нет, законы природы, могут быть «нарушены», только если это позволяет другой закон (исключение из правила).

  • информацию о каждом признаке несет определенный ген;
  • гены находятся в хромосомах.

Естественно, что количество хромосом значительно меньше количества генов, поэтому в одной хромосоме закодировано несколько генов.

Гены, находящиеся в одной хромосоме наследуются вместе, то есть сцеплено.

А гены, находящиеся в разных хромосомах наследуются независимо,

так как при гаметогенезе хромосомы распределяются случайно, следовательно, два несцепленных гена могут попасть вместе в одну гамету гамете, а могут и нет.

Гены, находящиеся в одной хромосоме, обязательно окажутся в одной гамете.

В примере, который мы рассмотрели ранее, мы можем заметить: серое тело наследуется вместе с нормальные крыльями , а черное тело наследуется вместе с укороченными крыльями .

Гены цвета тела и длины крыльев находятся в одной хромосоме.

Самка дигетерозиготна, есть две гомологичные хромосомы:

в одной из гомологичных хромосом закодированы гены серого тела и нормальных крыльев ,

в другой — гены черного тела и укороченных крыльев

Но получается всего два вида гамет — признаки цвета тела и размера крыльев «неделимы»

Отцовская особь по этим признакам дигомозиготная:

в одной гомологичной хромосоме гены черного тела и укороченных крыльев ,

и в другой гомологичной хромосоме так же.

Все признаки, закодированные в одной хромосоме, образуют так называемую группу сцепления .

Признаки из одной группы сцепления наследуются вместе.

И как можно догадаться,

количество групп сцепления равно количеству хромосом в гаплоидном наборе.

Примеры задач

Задача 1:

Немного другое оформление: сцепленные признаки записываются на «палочках», например генотип самки из нашей задачи следует записать вот так:

  • палочки означают гомологичные хромосомы, в которых локализованы гены
  • буквы по одну сторону от палочек обозначают сцепленные друг с другом гены.

То есть запись говорит:

признаки АВ сцеплены друг с другом; признаки ab так же сцеплены друг с другом

  • положение генов в генотипе 1) называется цис-положением: AB \ ab (доминантные признаки на одной хромосоме, рецессивные на другой)
  • положение 2) называется транс-положением: Ab \ aB.

Разберем на примере:

1) В условии задачи сразу указаны все признаки, заполним таблицу:

2) Первое растение дигетерозиготно, сказано, что доминантные признаки локализованы в одной хромосоме, то есть сцеплены. Причем доминантные признаки находятся на одной гомологичной хромосоме, следовательно на другой гомологичной хромосоме располагаются рецессивные признаки (цис-положение). Генотип первого растения: AB \ ab.

Получаем всего два вида гамет (так как признаки сцеплены):

3) Так как у второго растения проявил ись рецессивные признаки, делаем вывод, что оно дигомозиготно. И его генотип: ab\ab. Образуется только один сорт гамет: ab.

4) Наконец, составим схему скрещивания:

И ответим на последний вопрос задачи — про закон:

проявляется закон сцепленного наследования, он гласит: гены, локализованные в одной хромосоме образуют группу сцепления и наследуются вместе .

Но случается, что даже гены из одной группы сцепления (локализованные в одной хромосоме) наследуются раздельно, то есть «расцепляются».

Для примера, возьмем скрещивание из предыдущей задачи.

При таком же скрещивании может получиться и 4 фенотипические группы (вместо положенных 2) в потомстве, как и при независимом наследовании. Это объясняется возможностью кроссинговера между гомологичными хромосомами (тем, кто не понимает о чем речь, советую прочитать статью кроссинговер ).

Допустим если у особи признаки AB сцеплены, то при образовании гамет, если произойдет кроссинговер, есть вероятность, что участок хромосомы, в котором закодирован один из генов «перескочит» на другую гомологичную хромосому, и сцепление нарушится. На примере нашей задаче, в случае кроссинговера скрещивание будет следующим:

У дигетерозиготного растения образуется еще два сорта гамет, за счет кроссинговера. Гаметы, при образовании которых, произошел кроссинговер (в данной задаче это Ab и aB ) называются кроссоверными . Статистически процент кроссоверных гамет меньше некроссоверных.

Чем дальше друг от друга находятся гены в хромосоме, тем больше вероятность того, что сцепленные гены, будут «разлучены» при рекомбинации, происходящей во время кроссинговера.

И соответственно, чем ближе друг к другу расположены гены в хромосоме, тем вероятность их разъединения.

Эта зависимость вероятности разделения генов кроссинговером и расстояния между генами оказалась настолько «удобной», что расстояние между генами измеряют в процентах вероятности их разъединения при кроссинговере. По формуле:

  • x – вероятность разъединения генов в процентах,
  • а – количество особей, образовавшихся из кроссоверных гамет, n – количество всех особей.
  • И 1% вероятности разъединения генов приняли за единицу расстояния между этими генами.

Единица эта называется морганида. Назвали единицу в честь известного генетика Томаса Моргана, который изучал это явление

1 морганида = 1% вероятности, что сцепленные гены, в результате кроссинговера, окажутся на разных гомологичных хромосомах

Ссылка на основную публикацию
Adblock
detector