Наука о наследовании и изменчивости 2020 год

Генетика как наука о наследственности и изменчивости

Развитие живой материи на Земле происходит в бесконечной смене поколений. Жизнь неразрывно связана с размножением организмов. В каких бы формах оно ни осуществлялось, от одного поколения другому всегда передаются общие, характерные для данного вида признаки и свойства. Иными словами, потомство в той или иной степени обязательно похоже на своих родителей. Процесс воспроизведения организмами в ряду последовательных поколений сходных признаков и свойств называется наследственностью.Она проявляется во всем том общем, что имеется между родственными поколениями организмов. Таким образом, размножение связано с наследственностью. Уже второе поколение когда-то возникшей живой материи было похоже на первое. Часто признаки и свойства организмов при размножении воспроизводятся очень стойко: дети бывают удивительно похожи на своих родителей, однако абсолютного сходства между ними никогда не бывает, всегда отличаются друг от друга по каким-либо признакам и дети одних и тех же родителей.

Наследственность – это не простое воспроизведение, копирование каких-либо неизменных свойств и признаков организмов. Она всегда сопровождается их изменчивостью: при размножении организмов наряду с сохранением одних признаков изменяются другие. Не только воспроизводится подобное, но и возникает новое.

Наследственность и изменчивость всегда сопутствуют друг другу и проявляются в процессе размножения организмов совместно как противоречивые и в то же время неразрывно связанные между собой процессы. Размножение, следовательно, связано не только с наследственностью, но и с изменчивостью организмов.

Наука о наследственности и изменчивости организмов получила название генетика (от греч.geneticos– относящийся к происхождению).

Главная задача генетики– разработка методов управления наследственностью и изменчивостью для получения нужных человеку форм растений, животных и микроорганизмов и управления индивидуальным развитием организмов.

Генетика, как любая наука, имеет свои методы исследования:

1. Гибридологический анализ, заключающийся в использовании системы скрещиваний для установления характера наследования признаков и генетических различий изучаемых организмов. Гибридологический анализ, дополненный после работ Г. Менделя рядом специфических методов и приемов исследования наследственности, вошел в качестве важнейшей составной части в генетический анализ – основной метод генетики.

2. Цитологический метод– изучение структур клеток в связи с размножением организмов и передачей наследственной информации. На основе этого метода при использовании новейших способов изучения хромосомных структур возникла новая наука – цитогенетика.

3. Онтогенетический метод используется для изучения действия генов и проявления их в индивидуальном развитии организмов – онтогенезе в разных условиях внешней среды.

4. Статистический метод, с помощью которого изучают статистические закономерности наследственности и изменчивости организмов.

В истории генетики можно выделить три основных периода. Два из них, продолжавшиеся с 1900 по 1953 г., составляют эпоху классической генетики. Третий период, начавшийся после 1953 г., открылэпоху молекулярной генетики.

Первый период(1900–1910) в развитии генетики связан с утверждением открытий Г. Менделя: принципа дискретности в передаче наследственного материала и метода гибридологического анализа. Многочисленные опыты по гибридизации, проведенные в первом десятилетииXXв. с разными растениями и животными, показали, что правила в наследовании признаков, установленные впервые Г. Менделем, имеют универсальный характер и применимы по отношению ко всем организмам, размножающимся половым путем. Следовательно, законы наследственности едины для всего органического мира.

В этот период закономерности наследования признаков изучают на уровне целостного организма и не связывают с какими-либо материальными структурами клетки. Передачу и распространение в поколениях наследственных факторов рассчитывают с помощью буквенных схем и формул. Важнейшее значение для последующего развития генетики имела выдвинутая в это время (1901–1903) голландским ученым Гуго Де-Фризом теория мутаций. Датский генетик В. Иоганнсен на основе своих опытов по изучению наследования признаков в популяциях и чистых линиях фасоли (1903) разработал и ввел в генетику понятия ген, генотип, фенотип (1909).

Второй период (1911–1953) связан с установлением материальных основ наследственности. Еще в первое десятилетие развития генетики (1902–1907) Т. Бовери, У. Сэттон и Э. Вильсон обосновали хромосомную теорию наследственности. Было выяснено, что между поведением наследственных факторов и хромосом в процессах клеточного деления (митоз) и образованием половых клеток (мейоз), передающихся следующим поколениям, существует определенная связь. Для изучения явлений наследственности в это время стали пользоваться цитологическими методами. Произошло объединение метода генетического анализа с цитологическим методом. Так в генетике возниклоцитогенетическое направление. Было установлено, что наследственные факторы находятся в клетке. Изучение наследственности поднялось на более высокий уровень.

Решающее значение для обоснования и утверждения хромосомной теории наследственности имели начавшиеся в 1910 г. исследования американского генетика Т. Моргана с плодовой мушкой дрозофилой. В работах Т. Моргана и его учеников понятие наследственного фактора (гена) получило материальное воплощение.

Хромосомная теория наследственности установила, что гены находятся в хромосомах и расположены в них в линейном порядке. Гены образуют столько групп сцепления, сколько пар гомологичных хромосом имеется у данного вида. Гены, находящиеся в одной группе сцепления, благодаря явлению перекреста (кроссинговера) могут рекомбинироваться; величина рекомбинации – функция расстояния между генами. К началу 20-х гг. у дрозофилы было обнаружено и локализовано во всех четырех группах сцепления несколько сотен генов. Установленные на плодовой мушке принципы определения местоположения генов в хромосомах были перенесены на других животных и растительные объекты и оказались верными для всех видов организмов.

Читать еще:  Завещание с лишением наследников права наследования 2020 год

Третий период в развитии генетики, начавшийся после 1953 г., связан с использованием методов и принципов исследований точных наук: химии, физики, математики, кибернетики и т. д. Стали широко применять электронную микроскопию, рентгеноструктурный анализ, скоростное центрифугирование, метод радиоактивных изотопов, чистые препараты витаминов, ферментов и аминокислот и т. д. Анализ материальных основ наследственности перешел на молекулярный уровень изучения структурной организации живой материи.

Развитие современной генетики характеризуется проникновением молекулярных принципов исследований во все области учения о наследственности. Широкое развитие получили исследования по таким проблемам, как искусственный синтез гена вне организма, продленный мутагенез, гибридизация соматических клеток, получение гаплоидных растений при культивировании пыльников, механизмы регуляции активности и действие генов в процессах индивидуального развития, молекулярные основы рекомбинаций, репараций (восстановление) первичных повреждений генетического материала, генная инженерия, искусственный синтез нуклеиновых кислот и белков и др.

Для современного состояния генетики характерны, с одной стороны, влияние на нее принципов и методов исследований точных наук, а также все возрастающая связь ее с другими биологическими науками; с другой стороны, в самой генетике идет необычайно быстрый процесс дифференциации и превращения отдельных разделов и направлений исследований в самостоятельные науки.

Так, в короткий срок наряду с общей генетикой, генетикой животных и генетикой растений возникли цитогенетика, генетика человека, медицинская генетика, космическая генетика, генетика популяций, эволюционная генетика, биохимическая генетика, генетика микроорганизмов, генетика вирусов, генетика соматических клеток, генетика фотосинтеза, экологическая генетика, математическая генетика, генетика поведения и т. д.

НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ

Наследственность и изменчивость являются одними из определяющих факторов эволюции органического мира.

Наследственность — это свойство живых организмов сохранять и передавать потомству особенности своего строения и развития. Благодаря наследственности из поколения в поколение сохраняются признаки вида, сорта, породы, штамма. Связь между поколениями осуществляется при размножении через гаплоидные или диплоидные клетки (см. разделы «Ботаника» и «Зоология»).

Из органоидов клетки ведущая роль в наследственности принадлежит хромосомам, способным к самоудвоению и формированию с помощью генов всего комплекса характерных для вида признаков (см. главу «Клетка»). В клетках каждого организма содержатся десятки тысяч генов. Вся их совокупность, характерная для особи вида, называется генотипом.

Изменчивость противоположна наследственности, но неразрывно с ней связана. Она выражается в способности организмов изменяться. Благодаря изменчивости отдельных особей популяция оказывается разнородной. Дарвин различал два основных типа изменчивости.

Ненаследственная изменчивость (см. о модификациях в главе «Основы генетики и селекции») возникает в процессе индивидуального развития организмов под влиянием конкретных условий среды, вызывающих у всех особей одного вида сходные изменения, поэтому Дарвин эту изменчивость назвал определенной. Однако степень таких изменений у отдельных индивидуумов может быть различной. Например, у травяных лягушек низкие температуры вызывают темную окраску, но интенсивность ее у разных особей различна. Дарвин считал модификации не существенными для эволюции, так как они, как правило, не наследуются.

Наследственная изменчивость (см. о мутациях в главе «Основы генетики и селекции») связана с изменением генотипа особи, поэтому возникшие изменения наследуются. В природе мутации появляются у единичных особей под влиянием случайных внешних и внутренних факторов. Характер их предсказать трудно, поэтому Дарвин эту изменчивость. назвал неопределенной. Мутации бывают незначительными и существенными и затрагивают различные признаки и свойства. Например, у дрозофилы под влиянием рентгеновских лучей изменяются крылья, щетинки, окраска глаз и тела, плодовитость и т. д. Мутации могут быть полезными, вредными и безразличными для организма.

К наследственной изменчивости относится комбинативная изменчивость. Она возникает при свободных скрещиваниях в популяциях или при искусственной гибридизации. В результате рождаются особи с новыми сочетаниями признаков и свойств, отсутствовавшими у родителей (см. о дигибридном скрещивании, новообразованиях при скрещиваниях, перекресте хромосом в главе «Основы генетики и селекции»). Соотносительная изменчивость также наследственна; она выражается в том, что изменение одного органа вызывает зависимые изменения других (см. в главе «Основы генетики и селекции» множественное действие гена). Например, у гороха с пурпурными цветками всегда с таким же оттенком черешки и жилки листьев. У болотных птиц длинные конечности и шея всегда сопровождаются длинными клювом и языком. Наследственную изменчивость Дарвин считал особенно важной для эволюции, так как она служит материалом для естественного и искусственного отборов при образовании новых популяций, видов, сортов, пород и штаммов.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Наука о наследовании и изменчивости 2020 год

Генетика — наука о наследственности и изменчивости живых организмов и методах управления ими. В ее основу легли закономерности наследственности, установленные выдающимся чешским ученым Грегором Менделем (1822—1884) при скрещивании различных сортов гороха.

Наследственность — это неотъемлемое свойство всех живых существ сохранять и передавать в ряду поколений характерные для вида или популяции особенности строения, функционирования и развития. Наследственность обеспечивает постоянство и многообразие форм жизни и лежит в основе передачи наследственных задатков, ответственных за формирование признаков и свойств организма. Благодаря наследственности некоторые виды (например, кистеперая рыба латимерия, жившая в девонском периоде) оставались почти неизменными на протяжении сотен миллионов лет, воспроизводя за это время огромное количество поколений.

Читать еще:  Наследование долгов гк рф 2020 год

В то же время в природе существуют различия между особями как разных видов, так и одного и того же вида, сорта, породы и т. д. Это свидетельствует о том, что наследственность неразрывно связана с изменчивостью.

Изменчивость — способность организмов в процессе онтогенеза приобретать новые признаки и терять старые. Изменчивость выражается в том, что в любом поколении отдельные особи чем-то отличаются и друг от друга, и от своих родителей. Причиной этого является то, что признаки и свойства любого организма есть результат взаимодействия двух факторов: наследственной информации, полученной от родителей, и конкретных условий внешней среды, в которых шло индивидуальное развитие каждой особи. Поскольку условия среды никогда не бывают одинаковыми даже для особей одного вида или сорта (породы), становится понятным, почему организмы, имеющие одинаковые генотипы, часто заметно отличаются друг от друга по фенотипу, т. е. по внешним признакам.

Таким образом, наследственность, будучи консервативной, обеспечивает сохранение признаков и свойств организмов на протяжении многих поколений, а изменчивость обусловливает формирование новых признаков в результате изменения генетической информации или условий внешней среды.

Задачи генетики вытекают из установленных общих закономерностей наследственности и изменчивости. К этим задачам относятся исследования:

  • механизмов хранения и передачи генетической информации от родительских форм к дочерним;
  • механизма реализации этой информации в виде признаков и свойств организмов в процессе их индивидуального развития под контролем генов и влиянием условий внешней среды;
  • типов, причин и механизмов изменчивости всех живых существ;
  • взаимосвязи процессов наследственности, изменчивости и отбора как движущих факторов эволюции органического мира.

Генетика является также основой для решения ряда важнейших практических задач. К ним относятся:

  • выбор наиболее эффективных типов гибридизации и способов отбора;
  • управление развитием наследственных признаков с целью получения наиболее значимых для человека результатов;
  • искусственное получение наследственно измененных форм живых организмов;
  • разработка мероприятий по защите живой природы от вредных мутагенных воздействий различных факторов внешней среды и методов борьбы с наследственными болезнями человека, вредителями сельскохозяйственных растений и животных;
  • разработка методов генетической инженерии с целью получения высокоэффективных продуцентов биологически активных соединений, а также для создания принципиально новых технологий в селекции микроорганизмов, растений и животных.

При изучении наследственности и изменчивости на разных уровнях организации живой материи (молекулярный, клеточный, организменный, популяционный) в генетике используют разнообразные методы современной биологии:

  • гибридологический,
  • цитогенетический,
  • биохимический,
  • генеалогический,
  • близнецовый,
  • мутационный и др.

Однако среди множества методов изучения закономерностей наследственности центральное место принадлежит гибридологическому методу. Суть его заключается в гибридизации (скрещивании) организмов, отличающихся друг от друга по одному или нескольким признакам, с последующим анализом потомства. Этот метод позволяет анализировать закономерности наследования и изменчивости отдельных признаков и свойств организма приполовом размножении, а также изменчивость генов и их комбинирование.

24. Генетика – наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики

24. Генетика – наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики

Вспомните!

Что изучает генетика?

Почему основателем генетики считают Г. Менделя?

С какими объектами работал Г. Мендель?

Какой основной метод изучения наследственности он разработал?

Предмет и основные понятия генетики. На протяжении всей истории своего существования человечество всегда интересовал вопрос о причинах сходства детей и родителей. Почему подобное рождает подобное? «Как он похож на своего отца!» – восклицают родственники, придя на день рождения и глядя на выросшего юношу. «У него абсолютный музыкальный слух!» – с гордостью сообщает его мать, обладающая таким же качеством. В голубых глазах родителей светится гордость за подрастающее поколение, а виновник торжества, невинно моргая такими же голубыми глазами, незаметно съедает приготовленные для гостей конфеты.

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определённый порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка, тРНК или рРНК. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Читать еще:  Наследование двух признаков сцепленных с полом 2020 год

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов приобретать в процессе индивидуального развития отличия от других особей своего и других видов.

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом. Мы рождаемся с определённым цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесённые в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским учёным Грегором Менделем (1822–1884). Мендель не был первым учёным, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчётов.

Объясняя, почему именно Мендель смог обнаружить закономерности в передаче признаков от поколения к поколению, английский генетик Шарлотта Ауэрбах сказала: «Успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для учёного: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы».

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищён от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– в качестве экспериментальных признаков Мендель выбрал простые качественные альтернативные признаки по типу «или-или» (цветки пурпурные или белые, семена жёлтые или зелёные); сейчас трудно сказать, что здесь сыграло основную роль – удача или гениальное предвидение, но оказалось, что каждая пара выбранных Менделем признаков контролировалась одним геном, что значительно упрощало трактовку результатов скрещивания;

– при обработке получаемых данных Мендель вёл строгий математический учёт фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Результаты своих экспериментов Г. Мендель представил в 1865 г. на заседании Общества естествоиспытателей г. Брюнна (современный город Брно) и изложил в статье «Опыты над растительными гибридами». Но современники Менделя работы не оценили, и за оставшиеся 35 лет XIX в. его статью процитировали всего пять раз.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трёх лабораториях открыли заново закономерности наследования, учёный мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в своё время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

1. Дайте определения понятий «наследственность» и «изменчивость».

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель? Докажите, что выбранные учёным растения были оптимальным объектом в данных экспериментах.

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

Подумайте! Выполните!

1. До Г. Менделя многие исследователи предпринимали попытки установить закономерности наследования признаков от родителей к детям. Однако все они заканчивались неудачно. Как вы можете это объяснить?

2. Опишите фенотипы известных всем современников (актёров театра и кино, эстрадных артистов, политических деятелей и др.). Предложите одноклассникам по описанию определить человека.

3. Название науки фенологии имеет тот же корень, что и термин «фенотип». Что изучает фенология? Почему эти термины схожи?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Ссылка на основную публикацию
ВсеИнструменты
Adblock
detector