Кто первым открыл закономерности наследования признаков 2020 год

Открытие г.Менделем законов наследственности

Честь открытия количественных закономерностей, сопровождающих формирование гибридов, принадлежит чешскому монаху, ботанику-любителю Иоганну Грегору Менделю (1822-1884). В его работах, выполнявшихся с 1856 по 1863 гг. были раскрыты основы законов наследственности. В 1865 г. он отсылает в общество естествоиспытателей статью под названием «Опыты над растительными гибридами».

Г.Мендель впервые четко сформулировал понятие дискретного наследственного задатка («ген» — 1903 г., Иогансен). Фундаментальный закон Менделя – закон чистоты гамет.

1902 г. – У.Бэтсон формулирует положение о том, что одинаковые задатки – гомозиготные, разные – гетерозиготные.

Но! Экспериментальные исследования и теоретический анализ результатов скрещиваний, выполненные Менделем, опередили развитие науки более чем на четверть века.

О материальных носителях наследственности, механизмах хранения и передачи генетической информации и внутреннем содержании процесса оплодотворения тогда почти ничего еще не было известно. Даже умозрительные гипотезы о природе наследственности (Ч.Дарвин и др.) были сформулированы позже.

Этим объясняется то, что работа Г.Менделя не получила в свое время никакого признания и осталась неизвестной вплоть до переоткрытия законов Менделя.

В 1900 г. – независимо друг от друга три ботаника –

К. Корренс (Германия) (кукуруза)

Г.де Фриз (Голландия) (мак, дурман)

Э.Чермак (Австрия) (горох)

Обнаружили в своих опытах открытые ранее Менделем закономерности, и, натолкнувшись на его работу, вновь опубликовали ее в 1901 г.

Был установлен (1902 г.) факт, что именно хромосомы несут наследственную информацию (В. Сэттон, Т.Бовери). Это положило начало новому направлению генетики – хромосомной теории наследственности. В 1906 г. У.Бэтсон вводит понятия «генетика», «генотип», «фенотип».

Обоснование хромосомной теории наследственности

В 1901 г. Томас Гент (Хант) Морган (1866-1945) впервые стал проводить опыты на животных моделях – объектом его исследований стала плодовая мушка – Drosophila melanogaster. Особенности мушки:

Неприхотливость (разведение на питательных средах при температуре 21-25С)

Плодовитость (за 1 год – 30 поколений; одна самка – 1000 особей; цикл развития – 12 суток: через 20 ч-яйцо, 4 дня – личинка, еще 4 дня – куколка);

Половой диморфизм: самки крупнее, брюшко заостренное; самцы мельче, брюшко округлое, последний сегмент – черный)

Большой спектр признаков

Маленькие размеры (ок.3 мм.)

1910 Г. – т. Морган — Хромосомная теория наследственности:

Наследственность обладает дискретной природой. Ген – единица наследственности и жизни.

Хромосомы сохраняют структурную и генетическую индивидуальность в течение всего онтогенеза.

В R! Гомологичные хромосомы попарно конъюгируют, а затем расходятся, попадая в разные зародышевые клетки.

В возникших из зиготы соматических клетках набор хромосом состоит из 2-х гомологичных групп (жен., муж.).

Каждая хромосома играет специфическую роль. Гены расположены линейно и образуют одну группу сцепления.

1911 г. – закон сцепленного наследования признаков (генов) (гены, локализованные в одной хромосоме, наследуются сцеплено).

Таким образом, в развитии генетики выделяется два важных этапа:

1 – открытия Менделя, базирующиеся на гибридологических исследованиях – установление количественных закономерностей в расщеплении признаков при скрещивании.

2 – доказательство того, что носителями наследственных факторов являются хромосомы. Морган сформулировал и экспериментально доказал положение о сцеплении генов в хромосомах.

24. Генетика – наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики

24. Генетика – наука о закономерностях наследственности и изменчивости. Г. Мендель – основоположник генетики

Вспомните!

Что изучает генетика?

Почему основателем генетики считают Г. Менделя?

С какими объектами работал Г. Мендель?

Какой основной метод изучения наследственности он разработал?

Предмет и основные понятия генетики. На протяжении всей истории своего существования человечество всегда интересовал вопрос о причинах сходства детей и родителей. Почему подобное рождает подобное? «Как он похож на своего отца!» – восклицают родственники, придя на день рождения и глядя на выросшего юношу. «У него абсолютный музыкальный слух!» – с гордостью сообщает его мать, обладающая таким же качеством. В голубых глазах родителей светится гордость за подрастающее поколение, а виновник торжества, невинно моргая такими же голубыми глазами, незаметно съедает приготовленные для гостей конфеты.

Мы наследуем от своих родителей не только цвет глаз и волос, форму носа и группу крови. Мы наследуем черты темперамента и особенности движений, склонность к изучению языков и способность к математике. Мы рождаемся на свет, имея свой уникальный наследственный материал, ту программу, на основе которой под влиянием факторов внешней среды мы станем такими, какие мы есть – неповторимые и в то же время похожие на предыдущие поколения.

Наследственность и изменчивость – два свойства живых организмов, неразрывно связанные друг с другом как две стороны одной медали. Закономерности наследственности и изменчивости изучает одна из самых важных областей биологии – генетика.

Наследственность – это способность живых организмов передавать свои признаки, свойства и особенности развития следующему поколению. Наследственность обеспечивает материальную и функциональную преемственность между поколениями, сохраняя определённый порядок в природе. Некоторые виды могут оставаться относительно неизменными на протяжении сотен миллионов лет. Например, многие современные акулы мало чем отличаются от акул, живших в раннем меловом периоде более 130 млн лет тому назад.

Клетки организмов не содержат готовых признаков взрослой особи, наследование признаков происходит на молекулярном уровне. Основными структурами, которые обеспечивают материальную основу наследственности, являются хромосомы. Строго говоря, мы наследуем не свойства, а генетическую информацию. Элементарной структурной единицей наследственности является ген – участок ДНК, содержащий информацию о структуре одного белка, тРНК или рРНК. Генотип – это сумма всех генов организма, т. е. совокупность всех наследственных задатков.

Изменчивость – свойство, противоположное наследственности. Оно заключается в способности живых организмов приобретать в процессе индивидуального развития отличия от других особей своего и других видов.

Читать еще:  Наследование под условием 2020 год

Совокупность свойств и признаков организма, которые являются результатом взаимодействия генотипа особи и окружающей среды, называют фенотипом. Мы рождаемся с определённым цветом кожи, но стоит нам летом съездить в более южные края, как наша кожа приобретает смуглый оттенок. С возрастом светлеет радужка глаз и седеют волосы. Перенесённые в детстве болезни могут нарушить рост или развитие каких-то органов. Реализация наследственной информации находится под постоянным давлением факторов окружающей среды. Однако следует отметить, что существуют признаки, проявление которых не зависит от влияния внешней среды. Где бы мы ни жили: на севере или на юге, как бы нас ни кормили в детстве и какими бы болезнями мы ни болели, группа крови, с которой мы родились, останется неизменной на протяжении всей жизни.

У истоков генетики. Основные закономерности наследования признаков впервые были описаны во второй половине XIX в. австрийским учёным Грегором Менделем (1822–1884). Мендель не был первым учёным, который пытался ответить на вопрос: как передаются из поколения в поколение свойства и признаки? Многие исследователи до него скрещивали разнообразные организмы, стараясь увидеть какую-то систему в получаемых результатах. Стремясь добиться успеха как можно быстрее, исследователи скрещивали разные виды, получая при этом бесплодное потомство, брали для изучения сложные, трудно определяемые признаки, не вели точных математических подсчётов.

Объясняя, почему именно Мендель смог обнаружить закономерности в передаче признаков от поколения к поколению, английский генетик Шарлотта Ауэрбах сказала: «Успех работы Менделя по сравнению с исследованиями его предшественников объясняется тем, что он обладал двумя существенными качествами, необходимыми для учёного: способностью задавать природе нужный вопрос и способностью правильно истолковывать ответ природы».

Рассмотрим основные особенности работы Менделя, которые позволили ему добиться успеха:

– в качестве экспериментальных растений Мендель использовал разные сорта посевного гороха, поэтому потомство, получаемое в таких внутривидовых скрещиваниях, было плодовито;

– горох – самоопыляющееся растение, т. е. цветок защищён от случайного попадания посторонней пыльцы; при постановке нужного скрещивания Мендель удалял тычинки, чтобы исключить возможность самоопыления, а затем кисточкой переносил на пестик пыльцу другого родительского растения;

– горох неприхотлив и имеет высокую плодовитость;

– в качестве экспериментальных признаков Мендель выбрал простые качественные альтернативные признаки по типу «или-или» (цветки пурпурные или белые, семена жёлтые или зелёные); сейчас трудно сказать, что здесь сыграло основную роль – удача или гениальное предвидение, но оказалось, что каждая пара выбранных Менделем признаков контролировалась одним геном, что значительно упрощало трактовку результатов скрещивания;

– при обработке получаемых данных Мендель вёл строгий математический учёт фенотипов всех растений и семян.

В течение восьми лет Мендель экспериментировал с 22 сортами гороха, которые отличались друг от друга по семи признакам. За это время он изучил в общей сложности более 10 тыс. растений. Скрещивая различные организмы и исследуя получаемое потомство, Мендель, по сути, разработал основной и специфический метод генетики. Гибридологический метод – это система скрещиваний в ряду поколений, дающая возможность при половом размножении анализировать наследование отдельных свойств и признаков организмов, а также обнаруживать возникновение наследственных изменений.

Результаты своих экспериментов Г. Мендель представил в 1865 г. на заседании Общества естествоиспытателей г. Брюнна (современный город Брно) и изложил в статье «Опыты над растительными гибридами». Но современники Менделя работы не оценили, и за оставшиеся 35 лет XIX в. его статью процитировали всего пять раз.

Работа Менделя значительно опередила уровень развития науки того времени. Лишь когда в 1900 г. сразу в трёх лабораториях открыли заново закономерности наследования, учёный мир вспомнил, что 35 лет тому назад они уже были сформулированы. 1900 год считается годом рождения генетики, но закономерности, установленные в своё время Грегором Менделем, справедливо носят его имя.

Вопросы для повторения и задания

1. Дайте определения понятий «наследственность» и «изменчивость».

2. Кто впервые открыл закономерности наследования признаков?

3. На каких растениях проводил опыты Г. Мендель? Докажите, что выбранные учёным растения были оптимальным объектом в данных экспериментах.

4. Благодаря каким особенностям организации работы Г. Менделю удалось открыть законы наследования признаков?

Подумайте! Выполните!

1. До Г. Менделя многие исследователи предпринимали попытки установить закономерности наследования признаков от родителей к детям. Однако все они заканчивались неудачно. Как вы можете это объяснить?

2. Опишите фенотипы известных всем современников (актёров театра и кино, эстрадных артистов, политических деятелей и др.). Предложите одноклассникам по описанию определить человека.

3. Название науки фенологии имеет тот же корень, что и термин «фенотип». Что изучает фенология? Почему эти термины схожи?

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Закономерности наследования признаков

Лекция 4

при половом размножении (менделизм)

Г.Мендель в 1865 г. сформулировал идею о существовании наследственных факторов. Гибридологический метод, связанный с изучением характера наследования отдельных признаков и свойств позволил Менделю выявить и сформулировать основные правила наследственности.

К основным особенностям гибридологического метода изучения наследственности относят:

— использование в качестве исходных форм для скрещивания растений, отличающихся друг от друга сравнительно небольшим количеством (одна, две или три пары) контрастных признаков, и тщательный учет характера наследования каждого из них;

— точный количественный учет гибридных растений, различающийся по отдельным признакам, в ряде последовательных поколений;

— индивидуальный анализ потомства от каждого растения в ряде последовательных поколений;

— недопустимость влияния чужеродного генетического материала и родительские расы и гибриды;

Читать еще:  Право наследования после смерти мужа 2020 год

— сохранение способности к размножению у гибридов и их потомков.

Одной из главных причин, обеспечивших успех в работе Менделя, был удачный выбор объекта исследования. Работа была проведена на однолетнем растении — горохе, который имеет много сортов с четко различающимися признаками. Горох легко культивируется, является строгим самоопылителем, строение его цветков таково, что почти невозможен занос чужой пыльцы, но при необходимости, можно производить искусственное опыление.

При изучении наследования признаков составляют схемы скрещивания. Скрещивание обозначают знаком умножения (х), который ставится между родителями. При написании схем женский пол обозначают знаком ♀ (символ планеты Венеры), мужской — ♂ (символ планеты Марс), родительские формы — буквой Р (от англ. родители). В строке ниже родителей записывают все типы производимых ими гамет (половых клеток). Полученное в результате скрещивания потомство называют гибридами и обозначают буквой F, внизу буквы ставят цифру, указывающую, к какому поколению оно относится. Например, F1 — гибриды первого поколения, F2— второго поколения и т.д.

Датский ученый В.Иоганнсен в 1909 г. ввел понятия «ген», «генотип» и «фенотип». Ген — единица наследственности. Генотип — совокупность наследственных задатков (генов) организма Фенотипом называют совокупность всех признаков и свойств организма, доступных наблюдению и анализу. Фенотип формируется под влиянием генотипа и условий чреды. В 1902 г. английский зоолог В.Бэтсон ввел понятия «гомозигота» и «гетерозигота». Гомозиготными называют особей, получивших от отца и матери одинаковые наследственные задатки (гены). Гетерозиготными называют особей, получивших от отца и матери разные гены. Таким образом, по генотипу особи могут быть гомозиготными (АА или аа) или гетерозиготными (Аа).

При гибридологическом анализе довольно часто используют реципрокное скрещивание. Реципрокным называют два скрещивания, в одном из которых определенным признаком отличается отцовская форма, во втором — материнская. На основании проведенных опытов Менделем установлено три закона и правило чистоты гамет.

1 закон (правило) Менделя — закон единообразия гибридов первого поколения. Сущность его заключается в том, что при скрещивании гомозиготных родительских форм, различающихся по своим признакам, первое поколение получается единообразным.

Мендель начал изучать закономерности наследования признаков с моногибридного скрещивания, т.е. со скрещивания сортов гороха, отличающихся друг от друга только одним признаком. Он избрал для анализа семь пар четко различающихся признаков: форма зрелых семян — круглая или морщинистая, окраска семядолей зрелых семян — желтая или зеленая, окраска цветков и семенной кожуры — белая или окрашенная и др. Скрещивая между собой горох с альтернативными признаками, Мендель обнаружил, что у гибридов первого поколения появляется признак только одного из родителей (доминантный — А), в то время как признак другого родителя в гибридных формах остается скрытым (рецессивный — а). У гороха доминировала округлая форма семян над морщинистой, желтая окраска семядолей над зеленой. Полученные гибриды были одинаковы независимо от того, отцовскому или материнскому растению принадлежали доминирующие признаки. Например, наследственный задаток доминантной желтой окраски семядолей будет А, рецессивный задаток зеленой окраски — а.

2 закон Менделя — закон расщепления гибридов второго поколения при скрещивании гибридов первого поколения между собой. Суть правила расщепления заключается в следующем: во втором поколении моногибридного скрещивания наблюдается расщепление по фенотипу в соотношении 3:1, по генотипу в соотношении 1:2:1 (одна часть особей, гомозиготных по доминантному признаку, две части гетерозиготных и одна часть гомозиготных по рецессивному признаку).

Дигибридное скрещивание — это скрещивание особей, которые отличаются между собой по двум парам альтернативных признаков.

3 закон Менделя — закон независимого наследования генов (признаков А и В), которые находятся в разных парах хромосом. Генетически обусловленные признаки наследуются независимо друг от друга, сочетаясь во всех возможных комбинациях. Каждая пара аллельных генов наследуется по типу моногибридного скрещивания (3А+1а) х (3В+1в)=9АВ:3Ав:3аВ:1ав, то есть расщепление по фенотипу будет 9:3:3:1. По генотипу расщепление 1:2:1:2:4:2:1:2:1 = (1АА+2Аа+1аа)х(1ВВ+2Вв+1вв). Аллельными называют гены, которые располагаются в одном локусе (месте) гомологичных хромосом.

Вывод формулы расщепления по генотипу при дигибридном скрещивании

Расщепление по генотипу По одной паре аллелей
АА 2Аа аа
По другой паре аллелей ВВ ААВВ 2АаВВ ааВВ
2Вв 2ААВв 4АаВв 2ааВв
вв ААвв 2Аавв аавв

При опылении растений гороха с круглыми желтыми семенами (ААВВ) пыльцой сорта с морщинистыми зелеными семенами (аавв) все семена гибридов первого поколения оказались круглыми и желтыми (АаВв — дигетерозиготные). Доминировали та же форма и тот же цвет семян, что и при моногибридном скрещивании. При скрещивании гибридов первого поколения между собой получили вышеназванное расщепление. Мендель сумел определить генотип каждого из растений.. Растения имеющие два доминантных признака, круглые и желтые семена, различались по генотипу в соотношении 1 ААВВ+2ААВв+2АаВВ+4АаВв, с морщинистыми желтыми семенами — в соотношении 1 ааВВ+2ааВв, с круглыми зелеными семенами — в соотношении 1ААвв+2Аавв и одна часть особей с морщинистыми зелеными семенами имела генотип аавв.

Правило чистоты гамет состоит в том, что у гетерозиготной особи наследственные задатки не смешиваются друг с другом, а передаются в половые клетки в чистом виде.

Не нашли то, что искали? Воспользуйтесь поиском:

История развития генетики

Генетика – наука, изучающая закономерности и материальные основы наследственности и изменчивости организмов, а также механизмы эволюции живого. Наследственностью называется свойство одного поколения передавать другому признаки строения, физиологические свойства и специфический характер индивидуального развития. Свойства наследственности реализуются в процессе индивидуального развития.

Наряду со сходством с родительскими формами в каждом поколении возникают те или иные различия у потомков, как результат проявления изменчивости.

Изменчивостью называется свойство, противоположное наследственности, заключающееся в изменении наследственных задатков – генов и в изменении их проявления под влиянием внешней среды. Отличия потомков от родителей возникают также вследствие возникновения различных комбинаций генов в процессе мейоза и при объединении отцовских и материнских хромосом в одной зиготе. Здесь надо отметить, что выяснение многих вопросов генетики, особенно открытие материальных носителей наследственности и механизма изменчивости организмов, стало достоянием науки последних десятилетий, выдвинувших генетику на передовые позиции современной биологии. Основные закономерности передачи наследственных признаков были установлены на растительных и животных организмах, они оказались приложимы и к человеку. В своем развитии генетика прошла ряд этапов.

Читать еще:  Закон независимого наследования признаков кратко 2020 год

Первый этап ознаменовался открытием Г. Менделем (1865) дискретности (делимости) наследственных факторов и разработкой гибридологического метода, изучения наследственности, т. е. правил скрещивания организмов и учета признаков у их потомства. Дискретность наследственности состоит в том, что отдельные свойства и при знаки организма развиваются под контролем наследственных факторов (генов), которые при слиянии гамет и образовании зиготы не смешиваются, не растворяются, а при формировании новых гамет наследуются независимо друг от друга.

Значение открытий Г. Менделя оценили после того, как его законы были вновь переоткрыты в 1900 г. тремя биологами независимо друг от друга: де Фризом в Голландии, К. Корренсом в Германии и Э. Чермаком в Австрии. Результаты гибридизации, полученные в первое десятилетие XX в. на различных растениях и животных, полностью подтвердили менделевские законы наследования признаков и показали их универсальный характер по отношению ко всем организмам, размножающимся половым путем. Закономерности наследования признаков в этот период изучались на уровне целостного организма (горох, кукуруза, мак, фасоль, кролик, мышь и др.).

Менделевские законы наследственности заложили основу теории гена – величайшего открытия естествознания XX в., а генетика превратилась в быстро развивающуюся отрасль биологии. В 1901–1903 гг. де Фриз выдвинул мутационную теорию изменчивости, которая сыграла большую роль в дальнейшем развитии генетики.

Важное значение имели работы датского ботаника В. Иоганнсена, который изучал закономерности наследования на чистых линиях фасоли. Он сформулировал также понятие «популяциям» (группа организмов одного вида, обитающих и размножающихся на ограниченной территории), предложил называть менделевские «наследственные факторы» словом ген, дал определения понятий «генотип» и «фенотип».

Второй этап характеризуется переходом к изучению явлений наследственности на клеточном уровне (питогенетика). Т. Бовери (1902–1907), У. Сэттон и Э. Вильсон (1902–1907) установили взаимосвязь между менделевскими законами наследования и распределением хромосом в процессе клеточного деления (митоз) и созревания половых клеток (мейоз). Развитие учения о клетке привело к уточнению строения, формы и количества хромосом и помогло установить, что гены, контролирующие те или иные признаки, не что иное, как участки хромосом. Это послужило важной предпосылкой утверждения хромосомной теории наследственности. Решающее значение в ее обосновании имели исследования, проведенные на мушках дрозофилах американским генетиком Т. Г. Морганом и его сотрудниками (1910–1911). Ими установлено, что гены расположены в хромосомах в линейном порядке, образуя группы сцепления. Число групп сцепления генов соответствует числу пар гомологичных хромосом, и гены одной группы сцепления могут перекомбинироваться в процессе мейоза благодаря явлению кроссинговера, что лежит в основе одной из форм наследственной комбинативной изменчивости организмов. Морган установил также закономерности наследования признаков, сцепленных с полом.

Третий этап в развитии генетики отражает достижения молекулярной биологии и связан с использованием методов и принципов точных наук – физики, химии, математики, биофизики и др. – в изучении явлений жизни на уровне молекул. Объектами генетических исследований стали грибы, бактерии, вирусы. На этом этапе были изучены взаимоотношения между генами и ферментами и сформулирована теория «один ген – один фермент» (Дж. Бидл и Э. Татум, 1940): каждый ген контролирует синтез одного фермента; фермент в свою очередь контролирует одну реакцию из целого ряда биохимических превращений, лежащих в основе проявления внешнего или внутреннего признака организма. Эта теория сыграла важную роль в выяснении физической природы гена как элемента наследственной информации.

В 1953 г. Ф. Крик и Дж. Уотсон, опираясь на результаты опытов генетиков и биохимиков и на данные рентгеноструктурного анализа, создали структурную модель ДНК в форме двойной спирали. Предложенная ими модель ДНК хорошо согласуется с биологической функцией этого соединения: способностью к самоудвоению генетического материала и устойчивому сохранению его в поколениях – от клетки к клетке. Эти свойства молекул ДНК объяснили и молекулярный механизм изменчивости: любые отклонения от исходной структуры гена, ошибки самоудвоения генетического материала ДНК, однажды возникнув, в дальнейшем точно и устойчиво воспроизводятся в дочерних нитях ДНК. В последующее десятилетие эти положения были экспериментально подтверждены: уточнилось понятие гена, был расшифрован генетический код и механизм его действия в процессе синтеза белка в клетке. Кроме того, были найдены методы искусственного получения мутаций и с их помощью созданы ценные сорта растений и штаммы микроорганизмов – продуцентов антибиотиков, аминокислот.

В последнее десятилетие возникло новое направление в молекулярной генетике – генная инженерия – система приемов, позволяющих биологу конструировать искусственные генетические системы. Генная инженерия основывается на универсальности генетического кода: триплеты нуклеотидов ДНК программируют включение аминокислот в белковые молекулы всех организмов – человека, животных, растений, бактерий, вирусов. Благодаря этому можно синтезировать новый ген или выделить его из одной бактерии и ввести его в генетический аппарат другой бактерии, лишенной такого гена.

Таким образом, третий, современный этап развития генетики открыл огромные перспективы направленного вмешательства в явления наследственности и селекции растительных и животных организмов, выявил важную роль генетики в медицине, в частности, в изучении закономерностей наследственных болезней и физических аномалий человека.

Ссылка на основную публикацию